

Gutachten

Orientierende Untersuchung

Ehem. Grabeland Rosenweg in Schwerte Teilflächen ehem. Garagenhof und Zufahrt

Projekt: BV Wohnbebauung

Ehem. Grabeland

Rosenweg

58239 Schwertee

Auftraggeber: GWG Schwerte eG

Rathausstraße 24 58239 Schwerte

Bearbeitung: Dipl.-Geol. Dr. U. Heede

Projektnummer: 10-1728-A

Datum: 20. Dezember 2017

BIC: GENODEM1MSC

<u>Inhaltsverzeichnis</u>

Inha	altsverzeid	chnis	2				
Plar	n- und Arc	chivunterlagen	3				
1	Vorganç	Vorgang und Aufgabenstellung					
2	Informa	tionen zum Untersuchungsgelände	5				
	2.1	Lage, Größe, Umgebung und Zustand	5				
	2.2	Ehemaligen Nutzungen	5				
	2.3	Aktuelle und geplante Nutzungen	6				
	2.4	Informationen zu potenziellen Kampfmittelbeeinträchtigungen					
3	Untersu	chungsumfang	7				
	3.1	Geotechnische Geländearbeiten	7				
	3.2	Probeentnahmen, organoleptische Bewertung	7				
	3.3	Auswahl und Zusammenstellung der Proben für die chemische Analytik					
	3.4	Umfang der chemischen Untersuchungen	10				
4	Bewertu	ıngsgrundlagen	13				
	4.1	Gefährdungsabschätzungen	13				
	4.1.1	Boden – Gefährdungsabschätzung	13				
	4.1.2	Grundwasser – Gefährdungsabschätzung	16				
	4.2	Abfalltechnische Bewertungen Boden – Entsorgung (Verwertung und Beseitigung)	17				
5	Geologi	sche und hydrogeologische Verhältnisse	22				
	5.1	Geologische Verhältnisse					
	5.2	Grundwasser	24				
6	Erläuter	rung und Bewertung der Untersuchungsergebnisse	25				
	6.1	Erläuterung und Bewertung der Untersuchungsergebnisse - Gefährdungsabschätzungen	25				
	6.1.1	Ehem. Garagenhof					
	6.1.2	Zufahrt					
	6.2	Erläuterung und abfalltechnische Bewertungen der Untersuchungsergebnisse	29				

20.12.2017 2/36

7	Zusammenfassung, Empfehlungen zur weiteren Vorgehensweise und Hinweise	32
Anla	genverzeichnis	
Anla	gen	37

Plan- und Archivunterlagen

- [1] Geologische Karte von Nordrhein-Westfalen, M. 1: 100.000, Blatt C 4710 Dortmund, Geologisches Landesamt NRW, Krefeld 1989.
- [2] Lageplan Wohn- und Gewerbepark Rosenweg, M. 1: 500, Architekt Dipl.-Ing. W. A-rend, Schwerte 12.12.2014.
- [3] Information zur Anfrage auf Kampfmittelfreiheit für das Bauvorhaben, Stadt Schwerte – Bereich Ordnung, Schwerte 15.12.2014.

<u>Hinweis:</u> Das Gutachten ist incl. aller Anlagen gesamtheitlich zu betrachten. Sämtliche beigefügte Anlagen (Lagepläne, Schnitte, Labordaten, usw.) gelten nur in Zusammenhang mit dem hier vorgelegten Textteil. Eine separate Betrachtung der Anlagen sowie nur einzelner Kapitel oder Absätze innerhalb des Textes ist nicht zulässig.

20.12.2017 3/36

1 Vorgang und Aufgabenstellung

Die Gemeinnützige Wohnungsbaugenossenschaft Schwerte eG, Rathausstraße 24a in 58239 Schwerte, plant auf dem Grundstück des sog. "Ehem. Grabelands" (Teilfläche des Flurstücks 70 in der Flur 7 der Gemarkung Rosen) die Umsetzung einer Wohnbebauung (Mehrfamilien- und Doppelhäuser mit angegliederten Verkehrs- und Grünflächen).

Die Projektfläche, die in der Vergangenheit als Standort einer Kleingartenanlage genutzt wurde, war bereits Gegenstand von orientierenden Altlasten- und Baugrunduntersuchungen. Eine Dokumentation und Bewertung der Untersuchungsergebnisse erfolgte im

 Bericht zur orientierenden Baugrund- und Altlastenbewertung GEOlogik Wilbers & Oeder GmbH; Münster 06.03.2015

Die Aufschlusspunkte dieser Untersuchung, die von der **GEOlogik Wilbers & Oeder GmbH**, Feldstiege 100 in **48161 Münster-Nienberge** im Jahr 2015 im Auftrag der **DN Real Estate GmbH**, Rosenweg 15 in **58239 Schwerte** vorgenommen wurden, wurden in Form eines flächendeckenden Rasters festgelegt.

Im Südosten der Kleingartenanlage befand sich ein langgestrecktes (?Garagen-) Gebäude sowie Parkplatzflächen. Dieser Teilbereich, der nachfolgend als ehem. Garagenhof bezeichnet (Flächengröße <u>ca</u>. 1.050 m²), war nicht Gegenstand der Untersuchungen des Jahres 2015.

Der Kreis Unna – Fachbereich Natur und Umwelt - Sachgebiet Wasser und Boden – (Frau Mordhorst) - forderte im Vorfeld der Umsetzung der geplanten Bauvorhaben altlasten- und umwelttechnische Untersuchungen der Teilfläche des ehem. Garagenhofs. Weiterer Untersuchungsbedarf wurde auch im Bereich der Zufahrt (sog. "Platanenallee") postuliert.

Die Planungen des Umfangs der ergänzenden Untersuchungen der Projektfläche, die von der der GEOlogik Wilbers & Oeder GmbH im Auftrag der GWG Schwerte eG vorgenommen wurden, erfolgten jeweils in Abstimmung mit dem Fachbereich Natur und Umwelt des Kreises Unna.

20.12.2017 4/36

2 Informationen zum Untersuchungsgelände

2.1 Lage, Größe, Umgebung und Zustand

Das Untersuchungsgelände des ehemaligen Grabelandes liegt am westlichen Rand des Stadtzentrums von Schwerte (vgl. Anlage 1.1). Im Südosten schließt sich das Betriebsgelände der Deutsche Nickel GmbH an. Eine aktuell nicht mehr in Nutzung befindliche Zufahrt zum Betriebsgelände (sog. "Platanenallee") formt die östliche Begrenzung der Projektfläche des ehem. Grabelands aus. Während sich im nordöstlichen Umfeld ein Lebensmitteldiscounter befindet, werden das durch den Rosenweg begrenzte nördliche Umfeld sowie das westliche Umfeld durch Wohnbebauungen ausgeformt. Im Südwesten schließen sich landwirtschaftliche Nutzflächen an.

Die Gesamtfläche des ehem. Grabelands weist eine Größe von ca. 21.400 m² auf und formt eine Teilfläche des Flurstücks 70 in der Flur 7 der Gemarkung Rosen aus. Die Nord-Süd-Erstreckung des Grundstücks beträgt max. ca. 220 m bzw. die max. Ost-West-Erstreckung rd. 110 m (vgl. Anlage 1.2). Der Flächenanteil der Zufahrt beträgt ca. 1.350 m² bzw. diejenige des ehem. Garagenhofs ca. 1.050 m² (vgl. Anlagen 1.2 und 1.3).

Die Oberkante der Fahrbahn des Rosenwegs weist eine absolute Höhe von ca. 130,80 m NHN auf. Bei den im Bereich des ehem. Garagenhofs angesetzten Sondierungen wurde eine minimale Höhe von ca. 129,29 m NHN festgestellt. Das Gelände fällt dementsprechend von Nord nach Süd um ca. 1,5 m ab.

2.2 Ehemaligen Nutzungen

Die Projektfläche wurde als sog. Grabeland bis zum Jahr 2006 kleingärtnerisch genutzt. Im Südosten des überplanten Geländes befand sich die Teilfläche des sog. ehem. Garagenhofs. Die Grundlage des Lageplans der Anlage 1.3 besteht aus einem Luftbild des Jahres 2003. Aus diesem Luftbild geht ein etwa von Südwest nach Nordost ausgerichtetes, langgestrecktes Gebäude hervor, bei dem es sich vermutlich um Garagen handelte. Das Gebäude wurde von Parkplatz- und Verkehrsflächen umgeben.

20.12.2017 5/36

2.3 Aktuelle und geplante Nutzungen

Die Flächen der ehem. Kleingärten sowie des ehem. Garagenhofs liegen aktuell brach und sind mit Büschen, Sträuchern und kleineren Bäumen bestanden. Im Bereich des ehem. Garagenhofs sind reliktisch Schotterflächen und vereinzelt auch Fundamente vorhanden.

Die aktuellen Planungen der GWG Schwerte GmbH sehen die Errichtung von Mehrfamilienhäusern sowie von Stadtvillen vor.

2.4 Informationen zu potenziellen Kampfmittelbeeinträchtigungen

Gemäß eines Schreibens der Stadt Schwerte vom 15.12.2014 (vgl. Bericht vom 06.03.2015) liegt die Fläche in einem **Bombenabwurfgebiet**, jedoch **ohne unmittelbare Kampfmittelgefährdung**. Wegen erkennbarer Kriegsbeeinflussung kann eine derzeit nicht erkennbare **Kampfmittelbelastung nicht gänzlich ausgeschlossen** werden.

Gemäß eines Hinweises der Stadt Schwerte hat "vor jedem weiteren Bodeneingriff eine Kontaktaufnahme des Tiefbauunternehmens mit der Ordnungsbehörde zu erfolgen". Sofern ein Tiefbauunternehmen vor Ort aktiv werden sollte, ist dieses im Vorfeld entsprechend zu unterrichten.

20.12.2017 6/36

3 Untersuchungsumfang

3.1 Geotechnische Geländearbeiten

Die geotechnischen Geländearbeiten der ergänzenden Untersuchungen wurden in zwei Projektphasen vorgenommen. Die Aufschlussarbeiten im Bereich des **ehem. Garagenhofs** kamen am **23.08.2017** zur Ausführung, wobei die Kleinrammbohrungen (KRB) - in Fortführung der 2015 vorgenommenen Nummerierungen - die Bezeichnungen **KRB 12 bis KRB 18** erhielten.

Durch die Ausführung der Aufschlüsse **KRB 19 bis KRB 22** wurde am **02.10.2017** der Untergrund der sog. "**Platanenallee**" überprüft.

Im Rahmen der ergänzenden Arbeiten wurden 11 Sondierungen (Ø 50 mm) bis jeweils 3,0 m unter Geländeoberkante (GOK) abgeteuft.

Die Ansatzpunkte der Aufschlusspunkte wurden nach Lage und Höhe eingemessen. Die Lage der Bodenaufschlüsse wird im Lageplan der Anlage 1.2 sowie im Detaillageplan der Anlage 1.3 (nur ehem. Garagenhof) dokumentiert. I

Als Bezugsniveau für die Bodenaufschlüsse wurde die Höhe eines Kanaldeckels auf dem Rosenweg mit einer amtlichen Messhöhe von 130,79 m NHN (Kanalschacht Nr. 33602) gewählt (s. Anlage 1.2).

Die Ergebnisse der durchgeführten Kleinrammbohrungen werden in Schichtenprofilen in Anlehnung an die DIN 4023 in den Anlagen 2 dargestellt.

3.2 Probeentnahmen, organoleptische Bewertung

Aus den Kleinrammbohrungen wurden im ersten Bohrmeter in der Regel mindestens zwei Proben entnommen. Die weitere Entnahme von Proben erfolgte in tieferen Horizonten meterweise bzw. bei Schichtwechseln und / oder organoleptischen (geruchlich / optisch wahrzunehmenden) Auffälligkeiten. Im Rahmen der aktuellen Untersuchungen wurden insgesamt **65 Bodenproben** bis zur jeweiligen maximalen Aufschlusstiefe von 3,0 m entnommen und in Braungläser (500 ml) mit Schraubdeckelverschlüssen überführt.

20.12.2017 7/36

Per Geruch waren bei den Bodenproben keine eindeutigen Hinweise auf Schadstoffbelastungen wahrzunehmen. Die insbesondere bei den Bodenproben der Auffüllungen des ehem. Garagenhofs festzustellenden optischen Auffälligkeiten resultieren aus mineralischen und z. T. auch nichtmineralischen Fremdbestandteilen. Die entsprechenden Inhaltsstoffe werden im Kapitel 5.1 dieses Gutachtens dokumentiert.

Die Bodenproben wurden bis zur Übergabe an das beauftragte Labor jeweils dunkel und kühl gelagert.

3.3 Auswahl und Zusammenstellung der Proben für die chemische Analytik

Da bei den Bodeneinzelproben dieser Untersuchung keine signifikanten organoleptischen Hinweise auf deutlich erhöhte Schadstoffbelastungen vorlagen (z. B in Form eines Geruchs nach Lösemitteln, in Form von erhöhten Anteilen von teerstämmigem Bauschutt etc.), bestand kein Erfordernis Bodeneinzelproben in Hinsicht auf spezifische Schadstoffparameter zu prüfen.

Die Auffüllungen des Teilbereichs des ehem. Garagenhofs (Oberböden i. w. S. sowie Packlagen mit erhöhten Bauschuttanteilen) sowie des Teilbereichs der Zufahrt (vorwiegend aus Betonbruch bestehende Tragschichten [vgl. Kapitel 5.1]) wiesen die in Kammern angeführten eindeutigen Horizontierungen auf. Unter Berücksichtigung dieser Schichtfolgen wurden teilbereichsbezogen folgende Mischproben zusammengestellt:

Mischpro- be	KRB / Probe	Teufe [m]	Inhaltsstoffe
MP 1	12/1	0,0-0,4	Gbr, Bbr"
"Oberbo- den" Gara- genhof Nord	17/1	0,0 - 0,4	Gbr,
	18/1	0,0-0,3	Gbr, Schl"

Mischpro- be	KRB / Probe	Teufe [m]	Inhaltsstoffe
MP 2	13/1	0,0-0,3	-
"Oberbo- den" Gara- genhof zentral / ehem. Ge- bäude	16/1	0,0 - 0,2	Gbr

20.12.2017 8/36

Mischpro- be	KRB / Probe	Teufe [m]	Inhaltsstoffe
MP 3	14/1	0,0-0,4	Schl, Gbr
"Oberbo- den" Gara- genhof Süd	15/1	0,0 - 0,4	Schl, Gbr

Mischpro- be	KRB / Probe	Teufe [m]	Inhaltsstoffe
MP 4	12/2	0,4 - 0,9	Zbr, Schl, Asche
"Packlage" Garagenhof Nord	17/2	0,4 - 0,9	Bbr, Zbr, Schl, Asche, Kohle
	18/2	0,3 - 0,5	Bbr, Schl, Zbr'

Mischpro- be	KRB / Probe	Teufe [m]	Inhaltsstoffe
MP 5	13/2	0,3 - 0,7	Bbr, Schl, Zbr
"Packlage" Garagenhof zentral / ehem. Ge- bäude	16/2	0,2 - 0,5	Zbr, Bbr

Mischpro- be	KRB / Probe	Teufe [m]	Inhaltsstoffe
MP 6	14/2	0,4 - 0,9	Gbr', Schl"
"Packlage" Garagenhof Süd	15/2	0,4 - 0,6	Gbr', Schl''

Abkürzungen der Inhaltsstoffe: Bbr: Betonbruch Gbr: (Natur-) Gesteinsbruch

Zbr: Ziegelbruch Schl: Schlacke

Bbr': wenig Betonbruch Bbr": sehr wenig Betonbruch

Aus den Mischproben der "Oberböden" MP 1 bis MP 3 wurde anschließend die Mischprobe MP A bzw. aus den Mischproben MP 4 bis MP 6 der "Packlage" die Mischprobe MP B zusammengestellt, um weitere abfalltechnische Untersuchungen veranlassen zu können.

Die Überprüfung der **geogenen Böden** des Teilbereichs des ehem. Garagenhofs erfolgte durch die Zusammenstellung der Probe **MP C**, wobei folgende Bodeneinzelproben Berücksichtigung fanden:

	chpro- be	KRB / Probe	Teufe [m]	Inhaltsstoffe
М	PC	12/3	0,9 - 0,4	1
	ogene	13/4	1,0 – 2,0	1
	en des agen-	14/3	0,7 – 1,4	•
h	ofs	15/3	0,6 – 1,0	1
		16/3	0,5 – 1,4	-
		17/3	0,9 – 1,4	-
		18/3	0,5 – 1,4	-

20.12.2017 9/36

Entsprechend des im Teilbereich der **Zufahrt** gegebenen Aufbaus wurden eine Mischprobe aus dem **Beton der Fahrbahndecke** sowie eine Mischprobe der geringmächtigen und weitgehend aus Betonbruch bestehenden **Tragschicht** gebildet. Diese Proben erhielten die Bezeichnungen **MP I** sowie **MP II**.

Mischpro- be	KRB / Probe	Teufe [m]	Inhaltsstoffe
MP I	19/1	0,0-0,17	•
Beton der	20/1	0,0-0,17	-
Fahrbahn- decke der	21/1	0,0-0,2	-
Zufahrt	22/1	0,0-0,18	-

Mischpro- be	KRB / Probe	Teufe [m]	Inhaltsstoffe
MP II	19/2	0,17 – 0,3	Bbr, Zbr'
Tragschicht	20/2	0,17 – 0,3	Bbr
der Zufahrt	21/2	0,2-0,3	Bbr
	22/2	0,18 - 0,3	Bbr, Gbr

3.4 Umfang der chemischen Untersuchungen

Die Mischproben **MP 1 bis MP 6** der Auffüllungen sowie die Mischprobe **MP C** der Böden des geogenen Untergrunds des Garagenhofs wurden in Hinsicht auf ein breit angelegtes Parameterspektrum geprüft. Dieses Spektrum entspricht auch den Vorgaben der TR Boden (vgl. Kap. 4.2). Analoge Untersuchungen wurden bei der Probe **MP II** der Tragschichten der Zufahrt veranlasst.

Folgende Schadstoffparameter wurden im Feststoff und im Eluat untersucht:

im Feststoff:

- Kohlenwasserstoff-Index (KW)
- Leichtflüchtige aromatische Kohlenwasserstoffe (BTEX)
- Leichtflüchtige halogenierte Kohlenwasserstoffe (LHKW)
- Polycyclische aromatische Kohlenwasserstoffe, 16 Einzelsubstanzen n. EPA¹⁾
 (PAK)
- Extrahierbare organischen Halogenverbindungen (EOX)
- Polychlorierte Biphenyle (PCB)
- Gesamtgehalt des Kohlenstoffs (TOC [total organic carbon])

20.12.2017 10/36

¹⁾ n. EPA: nach U.S. Environmental Protection Agency

- Metalle/Schwermetalle (As/SM)
 - = Arsen (As), Blei (Pb), Cadmium (Cd), Chrom ges. (Cr ges.), Kupfer (Cu), Nickel (Ni), Quecksilber (Hg), Zink (Zn) und Thallium (Tl)
- Cyanide gesamt (CN ges.)

im Eluat:

- Metalle/Schwermetalle
 Arsen (As), Blei (Pb), Cadmium (Cd), Chrom ges. (Cr ges.), Kupfer (Cu), Nickel (Ni),
 Quecksilber (Hg) und Zink (Zn)
- pH-Wert und elektrische Leitfähigkeit
- Sulfat
- Chlorid
- Cyanide (CN) gesamt
- Phenolindex

Bei der Probe MP C wurde auf Eluatansätze verzichtet.

Im Vorfeld einer ggf. erforderlichen Entsorgung wurden bei den Proben **MP A** (Oberböden des Garagenhofs) sowie **MP B** (Packlage des Garagenhofs) des Weiteren folgende in der DepV¹) vorgesehenen Parameter berücksichtigt:

im Feststoff:

- pH-Wert
- Glühverlust
- Extrahierbare lipophile Stoffe

im Eluat:

- Metalle/Schwermetalle
 = Antimon (Sb), Barium (Ba), Chrom VI (Cr VI), Molybdän (Mo) und Selen (Se)
- Gesamtgehalt des gelösten organischen Kohlenstoffs (DOC [dissolved organic carbon])

Verordnung über Deponien und Langzeitlager (Deponieverordnung – DepV) Ausfertigungsdatum: 27.04.2009; uzuletzt geändert durch Art. 2 V v. 04.03.2016.

20.12.2017 11/36

¹⁾ DepV

- Wasserlöslicher Anteil
- Ammonium-Nitrat
- Fluorid
- Cyanide (CN) leicht freisetzbar

Ein reduzierter Parameterumfang wurde bei der Probe **MP I** des Betons der Fahrbahndecke beauftragt:

im Feststoff:

- Kohlenwasserstoff-Index (KW)
- Polycyclische aromatische Kohlenwasserstoffe, 16 Einzelsubstanzen n. EPA (PAK)
- Extrahierbare organischen Halogenverbindungen (EOX)
- Polychlorierte Biphenyle (PCB)
- Metalle/Schwermetalle (As/SM)
 - = Arsen (As), Blei (Pb), Cadmium (Cd), Chrom ges. (Cr ges.), Kupfer (Cu), Nickel (Ni), Quecksilber (Hg) und Zink (Zn)

im Eluat:

- Metalle/Schwermetalle
 = Arsen (As), Blei (Pb), Cadmium (Cd), Chrom ges. (Cr ges.), Kupfer (Cu), Nickel (Ni), Quecksilber (Hg) und Zink (Zn)
- pH-Wert und elektrische Leitfähigkeit
- Sulfat
- Chlorid
- Phenolindex

Die chemischen Untersuchungen der Bodenmischproben wurden von der Laboratorien Dr. Döring GmbH, Haferwende 12 in 28357 Bremen (DAkkS-Registrierummer:

D-PL-13462-01-00) vorgenommen. Bei den chemischen Untersuchungen nicht verbrauchtes Probenmaterial wird zwei Monate aufbewahrt und dann, falls vom Auftraggeber nicht anders bestimmt, einer geregelten Verwertung / Beseitigung zugeführt.

Die Ergebnisse der chemischen Untersuchungen sind dem Gutachten als Anlage 4.1 (Bodenmischproben) beigefügt.

20.12.2017 12/36

4 Bewertungsgrundlagen

4.1 Gefährdungsabschätzungen

4.1.1 Boden – Gefährdungsabschätzung

Die Bewertung der im Boden ermittelten Schadstoffgehalte im Hinblick auf ggf. vorliegende Gefährdungen (z.B. durch Aufnahme/Kontakt mit dem Boden [Wirkungspfad Boden – Mensch und Wirkungspfad Boden - Nutzpflanze] und bzgl. des Grundwassers [Wirkungspfad Boden - Sickerwasser – Grundwasser]) erfolgt – aufgrund eines fehlenden einheitlichen Regelwerks für sämtliche Untersuchungsparameter – in Anlehnung an

- die Prüfwerte nach Anhang 2 der Bundes-Bodenschutz- und Altlastenverordnung, BBodSchV vom 17.07.1999 (folgend als BBodSchV bezeichnet),
- die "Empfehlungen für die Erkundung, Bewertung und Behandlung von Grundwasserschäden" der Länderarbeitsgemeinschaft Wasser (LAWA) aus dem Jahre 1994 (folgend als LAWA-Liste bezeichnet) sowie
- die Prüfwerte gem. RdErl. D. Ministeriums für Städtebau und Wohnen, Kultur und Sport
 – V A 3 16.21 u.d. Ministeriums für Umwelt und Naturschutz, Landwirtschaft und
 Verbraucherschutz IV-5-584.10/IV-6-3.6-21 v. 14.03.2005 des Landes Nordrhein Westfalen zur "Berücksichtigung von Flächen mit Bodenbelastungen, insbesondere Altlasten, bei der Bauleitplanung und im Baugenehmigungsverfahren (folgend
 als Altlastenerlass NRW bezeichnet).

Für die Bewertung der nachgewiesenen Schadstoffgehalte für die Metalle/ Schwermetalle As, Pb, Cd, Cr, Ni und Hg, die PAK- Einzelsubstanz Benzo(a)pyren sowie PCB und CN werden die Prüfwerte der BBodSchV für die direkte orale, dermale oder inhalative Aufnahme schwer bzw. nicht flüchtiger Schadstoffe (Wirkungspfad Boden - Mensch) in Wohngebieten (= geplante Nutzung) herangezogen. Zusätzlich werden die Prüfwerte für Kinderspielflächen berücksichtigt. In der BBodSchV werden die Prüfwerte wie folgt definiert:

20.12.2017 13/36

Prüfwert:

Liegt die Konzentration von Schadstoffen unterhalb des jeweiligen Prüfwertes, ist insoweit der Verdacht einer schädlichen Bodenveränderung oder Altlast ausgeräumt.

Wenn die Schadstoffkonzentration im Boden Prüfwerte für den Boden überschreitet, ist deren Ausmaß und räumliche Verteilung unter Verwendung einer angepassten Probenahme zu ermitteln. Dabei soll auch festgestellt werden, ob sich aus begrenzten Anreicherungen von Schadstoffen Gefahren innerhalb einer Verdachtsfläche oder altlastenverdächtigen Fläche ergeben und ob eine Abgrenzung von nicht belasteten Flächen geboten ist.

Anmerkung:

Die Prüfwerte gelten nach der BBodSchV für den oberflächennahen Bereich, d.h. für Bodenproben aus Entnahmetiefen bis max. 0,1 m (Park- und Freizeitanlagen/Industrie- und Gewerbegrundstücke) bzw. 0,35 m (Kinderspielflächen/Wohngebiete). Im vorliegenden Gutachten werden darüber hinaus auch die Bodenproben aus tieferen Entnahmehorizonten in Anlehnung an die Prüfwerte der BBodSchV beurteilt. So können bei Änderungen des Geländeniveaus im Zuge ggf. erfolgender Nutzungsänderungen die dann evtl. exponierten Bodenschichten im Vorfeld betrachtet werden und die Parameterkonzentrationen als Eignungskriterien zu Planungszwecken herangezogen werden.

Im **Altlastenerlass NRW** wird darüber hinaus für die sog. Nutzung "Wohngärten", d.h. für eine Gartennutzung sowohl als Nutzgarten, als auch für Kinderspiel ein gesonderter Prüfwert für den Wirkungspfad Boden-Mensch festgelegt.

Wirkungspfad/ Prüfwerte [mg/kg]	Boden - Mensch			Boden - Nutz- pflanze
	ВВо	dSchV	Altlas	stenerlass NRW
Parameter	Wohn- gebiete	Kinderspiel- flächen	V	Vohngärten
As	50	25	25	
Pb	400	200	200	
Cd	20	10	2*	
Cr	400	200		
Ni	140	70		
Hg	20	10	5	
Benzo(a)pyren	4	2		1
РСВ	0,8	0,4		
Cyanide ges.	50	50		

^{*} gesonderter Prüfwert für Haus- und Kleingärten gem. BBodSchV Anhang 2, Tab.1.4

Für die Bewertung der in den Proben nachgewiesenen Schadstoffgehalte für die Parameter KW, PAK (n. EPA), die PAK-Einzelsubstanz Naphthalin sowie der Summenpara-

20.12.2017 14/36

meter BTEX und LHKW werden die <u>nutzungsunabhängigen</u> Orientierungswerte der LAWA-Liste verwendet. In der LAWA-Liste werden folgende Orientierungswerte definiert:

Prüfwert: Wert, bei deren Unterschreitung der Gefahrenverdacht

i.d.R. als ausgeräumt gilt. Bei Überschreitung ist eine wei-

tere Sachverhaltsermittlung geboten.

Maßnahmenschwellenwert: Wert, bei dessen Überschreitung i.d.R. weitere Maßnah-

men, z.B. eine Sicherung oder eine Sanierung auszulösen

ist.

In der folgenden Tabelle sind die Orientierungswerte der LAWA-Liste dargestellt:

Orientierungswerte [mg/kg]							
Parameter	Parameter Prüfwert Maßnahmen- schwellenwert						
KW	300 – 1.000	1.000 – 5.000					
PAK	2 – 10	10 – 100					
Naphthalin	1 – 2	5					
BTEX	2 - 10	10 – 30					
LHKW	1 - 5	5 - 25					

Spezielle Anforderungen wurden in der **BBodSchV** für "**Mutterböden**" bzw. **humose Oberböden** definiert (§ 12 Anforderungen an das Aufbringen und Einbringen von Materialien auf oder in den Boden). Falls derartige, im Rahmen von Erd- oder Tiefbauarbeiten ggf. abgeschobene Böden auf oder in eine durchwurzelbare Bodenschicht (wieder-) eingebaut werden oder mit diesen Böden die Herstellung einer durchwurzelbaren Bodenschicht erfolgen soll, müssen **Vorsorgewerte** eingehalten werden.

Der folgenden Tabelle sind die Vorsorgewerte der BBodSchV für **Schwermetall**gehalte zu entnehmen, wobei zwischen den Bodenarten Ton, Lehm/Schluff und Sand differenziert wird.

Vorsorgewerte der BBodSchV für anorganische Stoffe							
Bodenart	Cd [mg/kg]	Pb [mg/kg]	Cr ges. [mg/kg]	Cu [mg/kg]	Hg [mg/kg]	Ni [mg/kg]	Zn [mg/kg]
Ton	1,5	100	100	60	1,0	70	200
Lehm/Schluff	1,0	70	60	40	0,5	50	150
Sand	0,4	40	30	20	0,1	15	60

20.12.2017 15/36

Ferner wurden in der BBodSchV folgende, ebenfalls tabellarisch dargestellte **Vorsorgewerte** für die **organischen Schadstoffparameter** PCB, Summenkonzentration der PAK n. EPA sowie für die PAK-Einzelsubstanz Benzo(a)pyren definiert, wobei hier bei den Bewertungen der Humusgehalt zu berücksichtigen ist:

Vorsorgewerte der BBodSchV für organische Stoffe						
Böden PCB Σ PAK n. EPA Benzo(a)pyren [mg/kg] [mg/kg] [mg/kg]						
Humusgehalt > 8 %	0,1	10	1,0			
Humusgehalt ≤ 8 %	0,05	3,0	0,3			

4.1.2 Grundwasser – Gefährdungsabschätzung

In der BBodSchV (vgl. Unterkap. 4.1.1) werden weiterhin Prüfwerte zur Beurteilung des Wirkungspfades **Boden – Sickerwasser - Grundwasser** benannt. Diese "Eluatwerte" dienen zur Bewertung von im Boden festgestellten Schadstoffbelastungen im Hinblick auf das Gefährdungspotenzial des Grundwassers. Die Prüfwerte gelten nur für den Ort der Beurteilung, d. h. den Übergangsbereich von der ungesättigten in die gesättigte Bodenzone. In der nachstehenden Tabelle werden nur die Parameter berücksichtigt, die bei der vorliegenden Begutachtung durch die Eluatuntersuchungen gem. der TR Boden (2004) erfasst wurden.

Ferner ist darauf hinzuweisen, dass der Eluatansatz bei Untersuchungen gem. den Kriterien der TR Boden (sog. "S 4-Eluat") von den Vorgaben der BBodSchV abweicht und die Bewertung der Ergebnisse der Eluatuntersuchungen gem. Prüfwerten der BBodSchV somit lediglich einen orientierenden Charakter aufweist.

Die Prüfwerte der BBodSchV in Hinsicht auf Mobilisierbarkeiten von Schadstoffen beim Transfer vom Boden in das Grundwasser werden in der nachstehenden Tabelle dokumentiert.

20.12.2017 16/36

Parameter	Prüfwert Sickerwasser gem. BBodSchV Wirkungspfad Boden – Grundwasser im Eluat [µg/l]
As	10
Pb	25
Cd	5
Cr ges.	50
Cu	50
Ni	50
Hg	1
Zn	500
CN ges.	50
Phenole	20

4.2 Abfalltechnische Bewertungen Boden und Boden-Bauschutt-Gemenge – Entsorgung (Verwertung und Beseitigung)

Die Bewertung der in den Mischproben dieser Untersuchung ermittelten Schadstoffgehalte im Hinblick auf eine mögliche Entsorgung (Verwertung / Beseitigung) erfolgt zunächst in Anlehnung an die "Anforderungen an die stoffliche Verwertung von mineralischen Abfällen: Technische Regeln Teil II: Technische Regeln für die Verwertung 1.2 Bodenmaterial" (nachfolgend als <u>TR Boden 2004</u> bezeichnet).

Die Technischen Regeln Boden wurden am 04./05.12.2004 von der Umweltministerkonferenz zur Kenntnis genommen und von der Mehrheit der Bundesländer erklärt, die TR-Boden in den Vollzug zu übernehmen.

Das Landesamt für Natur, Umwelt und Verbraucherschutz des Landes Nordrhein-Westfalen weist in einer Veröffentlichung aus dem Jahre 2007 darauf, dass bis zum Erlass bundeseinheitlicher Regelungen im Verwaltungsvollzug des Landes die Notwendigkeit besteht, dass von den zuständigen Umweltschutzbehörden im Einzelfall die zur Einhaltung der abfall-, bodenschutz- und wasserrechtlichen Vorgaben zu stellenden Anforderungen zu konkretisieren sind. Dabei kann der von der LAGA im Jahr 2004 vorgelegte Entwurf der TR Boden orientierend zur Bewertung herangezogen werden.

20.12.2017 17/36

Die TR Boden wurde für **Böden mit einem Anteil mineralischer Fremdbestandteile** < 10 Vol.-% definiert.

In der TR Boden 2004 werden folgende Zuordnungswerte (Obergrenzen der Einbauklassen) für die Verwertung von minderbelasteten Böden unterschieden:

Zuordnungswert Z 0: Uneingeschränkter Einbau, Verwendung in bodenähnlichen An-

wendungen, z. B. Wiedereinbau auf Baugeländen.

Im Feststoff werden Z 0-Werte für die drei Bodenarten Sand, Lehm/Schluff und Ton unterschieden (Mischböden sind wie die Bodenart Lehm/Schluff zu bewer-

ten).

Im Eluat ist hingegen nur ein Z 0-Wert ausgewiesen.

Zuordnungswert Z 0*: Uneingeschränkter Einbau, Verwendung in bodenähnlichen An-

wendungen, z.B. für die Verfüllung von Abgrabungen unter Ein-

haltung bestimmter Randbedingungen.

(die Verfüllung muss mit 2 m Boden gem. den Vorsorgewerten

der BBodSchV abgedeckt werden etc.).

Im Feststoff werden keine Z 0*-Werte für die Bodenarten Sand, Lehm/ Schluff und Ton unterschieden, jedoch gibt es bei einigen Parametern wiederum Aus-

nahmen, d.h. höhere Z 0*-Werte.

Im Eluat ist nur ein Z 0*-Wert ausgewiesen.

Zuordnungswert Z 1: eingeschränkter offener Einbau in technischen Bauwerken (Z 1).

Im Feststoff werden keine Z 1.1/Z 1.2-Werte für die Bodenarten Sand, Lehm/

Schluff und Ton unterschieden.

Im Eluat hingegen erfolgt eine Unterscheidung in die Zuordnungswerte Z 1.1 (Normalfall) und Z 1.2 (Einzelfall/ Ausnahme = Einbau nur in hydrogeologisch

günstigen Gebieten).

Eine Ausnahme bilden hier die im Feststoff ermittelten PAK-Gehalte. Bei Konzentrationen von ≤ 3 mg/kg liegen entsorgungstechnisch keine relevanten Belastungen vor (= Z 0) bzw. ist bei Konzentrationen > 3 mg/kg \leq 9 mg/kg ein Einbau nur in Gebieten mit hydrogeologisch günstigen Deckschichten (entspr.

weitgehend Z 1.2 = Z 1 "mit Einschränkung") möglich.

Zuordnungswert Z 2: eingeschränkter Einbau mit definierten technischen Sicherungs-

maßnahmen, z.B. Lärm-/Sichtschutzwälle, Straßendämme, etc. (Abdeck-/Dichtungsmaterialen wie Kunststoffdichtungsbahnen, Asphalte, Beton etc., sind über dem Z 2-Boden aufzubringen)

Im Feststoff werden keine Z 2-Werte für die Bodenarten Sand, Lehm/ Schluff

und Ton unterschieden.

Im Eluat ist auch nur ein Z 2-Wert ausgewiesen.

Aus den o.a. Ausführungen ist ersichtlich, dass für eine Bodenklassifikation im Hinblick auf die Verwertung/Entsorgung gem. **TR Boden** 2004 eine erhebliche **Differenzierung** bei der Zuordnung und Einstufung der Schadstoffgehalte erforderlich ist.

20.12.2017 18/36

Nachfolgend werden die Zuordnungswerte Z 0 / Z 0*, Z 1 und Z 2 der TR Boden 2004 im Feststoff aufgelistet.

Zuordnungswerte Boden gem. TR Boden 2004 – Feststoff							
Parameter	Einheit	Z 0		Z 0*	Z 1	Z 2	
		Sand	Lehm/ Schluff	Ton			
As	mg/kg	10	15	20	15 (20)	45	150
Pb	mg/kg	40	70	100	140	210	700
Cd	mg/kg	0,4	1	1,5	1 (1,5)	3	10
Cr ges.	mg/kg	30	60	100	120	180	600
Cu	mg/kg	20	40	60	80	120	400
Ni	mg/kg	15	50	70	100	150	500
TI	mg/kg	0,4	0,7	1	0,7 (1,0)	2,1	7
Hg	mg/kg	0,1	0,5	1	1,0	1,5	5
Zn	mg/kg	60	150	200	300	450	1.500
Cyanide ges.	mg/kg	-	-	-	-	3	10
EOX	mg/kg	1	1	1	1	3	10
KW	mg/kg	100	100	100	200 (400)	300 (600)	1.000 (2.000)
BTEX	mg/kg	1	1	1	1	1	1
LCKW	mg/kg	1	1	1	1	1	1
РСВ	mg/kg	0,05	0,05	0,05	0,1	0,15	0,5
PAK	mg/kg	3	3	3	3	3 (9)	30
Ben- zo(a)pyren	mg/kg	0,3	0,3	0,3	0,6	0,9	3

Anmerkungen: Bei den in Klammern benannten Werten handelt es sich um Schadstoffgehalte, die im Ausnahme-/Sonderfall herangezogen werden, z.B. bei der Bodenart Ton, bei besonderen C/N-Verhältnissen, bei KW-Verbindungen mit Kettenlängen von C10 bis C22 bzw. C10 bis C40

Bei PAK-Konzentrationen von ≤ 3 mg/kg liegen keine entsorgungsrelevanten Belastungen vor (entspr. Z 0) bzw. ist bei Konzentrationen > 3 mg/kg ≤ 9 mg/kg ein Einbau nur in Gebieten mit hydrogeologisch günstigen Deckschichten (entspr. weitgehend Z 1.2 = Z 1 "mit Einschränkung") möglich.

20.12.2017 19/36

In der folgenden Tabelle sind die Zuordnungswerte Z 0 / Z 0*, Z 1.1, Z 1.2 und Z 2 der TR Boden 2004 im Eluat aufgelistet:

Zuordnungswerte Boden gem. TR Boden 2004 – Eluat								
Parameter	Einheit	Z 0 / Z 0*	Z 1.1	Z 1.2	Z 2			
pH-Wert	-	6,5 – 9,5	6,5 – 9,5	6 – 12	5,5 – 12			
elektr. Leitf.	μS/cm	250	250	1.500	2.000			
As	μg/l	14	14	20	60 (120)			
Pb	μg/l	40	40	80	200			
Cd	μg/l	1,5	1,5	3	6			
Cr ges.	μg/l	12,5	12,5	25	60			
Cu	μg/l	20	20	60	100			
Ni	μg/l	15	15	20	70			
Hg	μg/l	< 0,5	< 0,5	1	2			
Zn	μg/l	150	150	200	600			
Chlorid	mg/l	30	30	50	100 (300)			
Sulfat	mg/l	20	20	50	200			
Cyanid ges.	μg/l	5	5	10	20			
Phenol-Index	μg/l	20	20	40	100			

Anmerkungen:

bei den in Klammern benannten Werten, handelt es sich um Schadstoffgehalte, die im Ausnahme/Sonderfall herangezogen werden, z.B. bei natürlichen Böden (d. h. geogenen / natürlichen Belastungen).

An dieser Stelle ist darauf hinzuweisen, dass lediglich die Böden des **geogenen Unter- grunds** der Projektfläche (**MP C**) einen Anteil an mineralischen Fremdbestandteilen von weniger als 10 Volumen-% aufweisen.

Die sog. Oberböden des Garagenhofs, die durch die Proben MP 1 bis MP 3 erfasst wurden, sind als Gemenge aus Böden und Bauschutt anzusprechen bzw. beträgt der Anteil der mineralischen Fremdbestandteile ca. 10 % bis 30%. Abfalltechnisch sind auch die Packlagen des Garagenhofs (MP 4 bis MP 6), die Fahrbahndecke (MP I) sowie die Tragschicht der Zufahrt (MP II) als "Bauschutt" zu kennzeichnen, die auf Grundlage der Zuordnungswerte der LAGA-Richtlinie (Bauschutt) des Jahres 1997/2003 zu bewerten sind.

20.12.2017 20/36

Die Zuordnungswerte der LAGA-Bauschutt werden nachstehend ebenfalls in tabellarischer Form wiedergegeben.

Zuordnungswerte Bauschutt gem. LAGA-Richtlinie 2003 – Feststoff							
Parameter	Einheit	Z 0	Z 1.1	Z 1.2	Z 2		
KW	mg/kg	100	300	500	1.000		
PAK	mg/kg	1	5 (20)	15 (50)	75 (100)		
EOX	mg/kg	1	3	5	10		
PCB	mg/kg	0,02	0,1	0,5	1		
As	mg/kg	20					
Pb	mg/kg	100					
Cd	mg/kg	0,6	Einstufung gem.				
Cr ges.	mg/kg	50	den Ergebnissen der				
Cu	mg/kg	40		•			
Ni	mg/kg	40	Eluatuntersuchungen				
Hg	mg/kg	0,3					
Zn	mg/kg	120					

Anmerkung PAK: Im Einzelfall kann bis zu dem in Klammern genannten Wert abgewichen werden.

Zuordnungswerte Bauschutt gem. LAGA-Richtlinie 2003 – Eluat							
Parameter	Einheit	Z 0	Z 1.1	Z 1.2	Z 2		
pH-Wert			7,0 – 12,5				
el. Leitf.	μS/cm	500	1.500	2.500	3.000		
Chlorid	mg/l	10	20	40	150		
Sulfat	mg/l	50	150	300	600		
As	μg/l	10	10	40	50		
Pb	μg/l	20	40	100	100		
Cd	μg/l	2	2	5	5		
Cr ges.	μg/l	15	30	75	100		
Cu	μg/l	50	50	150	200		
Ni	μg/l	40	50	100	100		
Hg	μg/l	0,2	0,2	1	2		
Zn	μg/l	100	100	300	400		
Phenol-I.	μg/l	< 10	10	50	100		

20.12.2017 21/36

5 Geologische und hydrogeologische Verhältnisse

5.1 Geologische Verhältnisse

Das Untersuchungsgebiet liegt am Nordrand des Rheinischen Schiefergebirges. Nach der Geologischen Karte von Nordrhein-Westfalen M 1: 100.000, Blatt C 4710 Dortmund [1] befindet sich die Untersuchungsfläche tlw. im Bereich äolischer Sedimente, die über den Gesteinen des karbonischen Grundgebirges liegen. Letzteres besteht aus Ton- und Schluffsteinen des Oberkarbons (hier: Ziegelschieferfolge, Oberes Namur B). Sie sind den flözleeren Sedimentschichten des Ruhrkarbons zuzuordnen und weisen regional Mächtigkeiten von ca. 250 – 400 m auf. Die das Grundgebirge überlagernden Schichten sind feinsandigschluffig ausgeprägt (Löss, Lösslehm).

In den Teilbereichen, die als Standorte der **Schrebergärten** dienten, wurden **2015** folgende Schichtfolgen erschlossen:

bis ca. 0,3 m unter GOK: Humose Oberböden

Sand, schluffig, humos, Wurzeln, braun-schwarz ge-

färbt, kalkfrei, erdfeucht.

bis ca. 1,5 / 2,6 m unter GOK: Löß

Schluff, schwach feinsandig, braun gefärbt, kalkfrei, feucht bis sehr feucht. Vorwiegend steife Konsistenz. Durchlässigkeitsbeiwert k_f ca. 10⁻⁶ bis 10⁻⁷ m/s.

bis zur Endteufe: Tonstein, verwittert

Ton, schluffig, schwach feinsandig, Gesteinsbruch, blättrig brechend, kalkfrei, braun gefärbt. Steif bis

halbfest, zur Tiefe fester werdend.

Davon abweichend werden beim Aufschluss der KRB 1, der bei der Untersuchung des Jahres 2015 im Bereich des ehem. Garagenhofs zur Ausführung kam, eine Auffüllungsböden (Schotter, Sand und Ziegelbruch mit schluffigen Anteilen) mit einer Mächtigkeit von ca. 1,0 m beschrieben.

Bei den im Bereich des **ehem. Garagenhofs** angesetzten Sondierungen **KRB 12 bis KR18** sowie den Sondierungen **KRB 19 bis KRB 22**, die im Bereich der **Zufahrt** zur Ausführung

20.12.2017 22/36

kamen, wurden in den Auffüllungen folgende Schichtfolgen nachgewiesen (vgl. Schichtenprofile, Anlagen 2.1 ff):

Anhropogen beeinflusste Böden des ehem. Graaenhofs

bis ca. 0,3 m / 0,4 m unter GOK:

"Oberböden"

In einer sandigen, z. T. auch schluffigen und bereichsweise auch schwach humosen Matrix vorwiegend Gesteinsbruchstücke (= Natursteinschotter) mit Betonbruch- und Schlackeanteilen. Diese Zusammensetzungen wurden im nördlichen Bereich des ehem. Garagenhofs sowie im Untergrund des ehem. Gebäudes festgestellt.

Südlich des ehem. Garagengebäudes (KRB 14 und KRB 15) ist davon auszugehen, dass das erschlossene Schlacke-Schotter-Gemenge als reliktisch erhaltenes Tragschichtmaterial zu werten ist.

Bei den dargestellten Varietäten liegen die Anteile der "mineralischen" Beimengungen überwiegend über 10 Vol.-%.

bis ca. 0,5 / 1,0 m unter GOK:

"Packlage"

Die Basis der Auffüllung besteht aus sehr heterogen zusammengesetzten Gemengen. Diese Gemenge werden vorwiegend durch Bauschuttanteile (v. a. Ziegel- und Betonbruch) mit Anteilen von Schlacken, Aschen und Kohlen ausgeformt. Die mineralischen Fremdbestandteile formen jeweils Anteile von deutlich mehr als 10 Vol.-% aus.

Auffüllungen der Zufahrt

bis ca. 0.17 m / 0.2 m unter GOK:

Fahrbahndecke aus Beton

bis ca. 0,3 m unter GOK

geringmächtige Tragschicht

ganz überwiegend Betonbruch, lokal wenig Ziegel-

bruch

Böden des geogenen Untregrunds

bis ca. 2,3 / 3,0 m unter GOK:

Schluff, schwach feinsandig, braun gefärbt

bis zur Endteufe:

Tonstein, verwittert

Ton, schluffig, schwach feinsandig, Gesteinsbruch.

20.12.2017 23/36

5.2 Grundwasser

Der Grundwasserspiegel wurde bei den am 24.08.2017 sowie am 04.10.2017 durchgeführten Geländearbeiten mittels Kabellichtlot bzw. Klopfnässe (indirekter Hinweis) in Tiefen zwischen rd. 1,2 m und 1,8 unter GOK im jeweiligen Bohrloch festgestellt. Analoge Ergebnisse erbrachten bereits die 2015 durchgeführten Untersuchungen.

Eine exakte Angabe zu den Grundwasserständen ist im Bereich des Baugeländes aufgrund jahreszeitlich bedingter, natürlicher Schwankungen nur mithilfe von Langzeitmessungen in zuvor eingerichteten Grundwassermessstellen möglich.

Das Untersuchungsgebiet befindet sich innerhalb der Wasserschutzzone IIIa im Verwaltungsbereich der Dortmunder Energie- und Wasserversorgung GmbH / Wasserwerke Westfalen GmbH (s. Abb. 1).

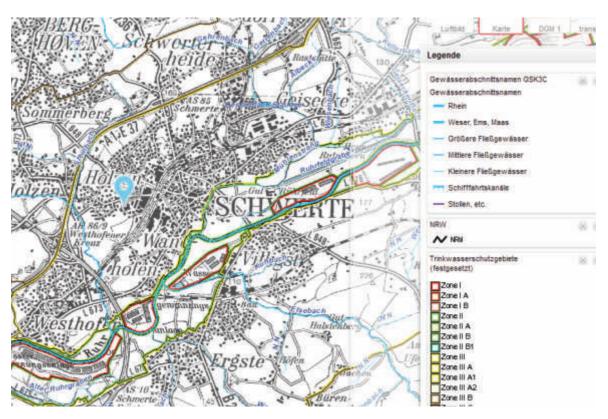


Abbildung 1: Screenshot aus dem Umweltportal ELWAS-IMS vom 26.02.2015 mit Kennzeichnung des Untersuchungsgeländes (= blauer Kreis).

20.12.2017 24/36

6 Erläuterung und Bewertung der Untersuchungsergebnisse

Die Prüfberichte des Labors liegen diesem Gutachten in Form der Anlagen 4.1 bei. Die Ergebnisse der laboranalytischen Arbeiten der veranlassten Untersuchungen werden des Weiteren in tabellarischer Form in der Anlage 4.2 dokumentiert. Bei der Ergebnisdarstellung der Proben (hier: Böden und Boden-Bauschutt-Gemenge) werden jeweils in den linken Spaltenhälften durch Farbgebungen Bewertungen im Sinne von Gefährdungsabschätzungen (hier BBodSchV und LAWA-Liste [vgl. Kapitel 4.1.1]) bzw. in den rechten Spaltenhälften abfalltechnische Bewertungen (TR Boden [vgl. Kapitel 4.2]) vorgenommen.

6.1 Erläuterung und Bewertung der Untersuchungsergebnisse - Gefährdungsabschätzungen

6.1.1 Ehem. Garagenhof

Bei den **Oberböden** bzw. den Proben MP 1 bis MP 3 wurden bei den überprüften **organischen Schadstoffparametern** keine Gehalte oder lediglich geringfügig erhöhte Schadstoffgehalte nachgewiesen. Die Prüfwerte der LAWA-Liste werden unterschritten bzw. lag nur bei der Probe MP 3 eine PAK-Summenkonzentration vor, die mit einem Gehalt von 3,185 mg/kg im unteren Bereich der Spanne des Prüfwerts der LAWA-Liste (2 – 10 mg/kg) einzuordnen ist. Bewertungen des mäßig erhöhten **EOX**-Gehalt von 4,4 mg/kg, der zunächst bei der Probe MP 3 dokumentiert wurde, werden nachstehend im Kontext mit der sog. "Packlage" vorgenommen.

Auch bei den **anorganischen Schadstoffparametern** ergaben sich keine Hinweise auf relevant erhöhte Schadstoffgehalte. Unter Berücksichtigung der Prüfwerte der BBodSchV (Wirkungspfad Boden – Mensch) werden sowohl die Kriterien für Wohngebiete, als auch die Kriterien für Kinderspielflächen eingehalten. Ergänzend ist an dieser Stelle darauf hinzuweisen, dass auch die vom Land NRW für sog. "Wohngärten" festgelegten Kriterien (vgl. Kapitel 4.1.1) erfüllt werden.

Die oben bereits angeführte PAK-Konzentration der Probe MP 3 löst auch eine als geringfügig zu beschreibende Überschreitung des **Vorsorgewerts** der BBodSchV aus, der bei einem Humusgehalt von weniger als 8 % mit einem Gehalt von 3 mg/kg festgelegt wurde. Weitere Überschreitungen von Vorsorgewerten (Bodenart jeweils Lehm / Schluff) lagen nur

20.12.2017 25/36

bei den Proben MP 1 und MP 3 bzw. bei den Parametern Pb (74 mg/kg bzw. 140 mg/kg gegenüber 70 mg/kg), Cu (100 mg/kg bzw. 110 mg/kg gegenüber 40 mg/kg), Ni (81 mg/kg bzw. 72 mg/kg gegenüber 50 mg/kg) sowie Zn (nur MP 3: 240 mg/kg gegenüber 150 mg/kg) vor.

Aus den Inhaltsstoffen der sog. "Packlage" resultieren Restriktionen für die geplante Nutzung. Überschreitungen der Kriterien für Wohngebiete wurden bei den Proben MP 4 (Parameter Ni: 470 mg/kg gegenüber 140 mg/kg) und MP 6 (Parameter Pb: 750 mg/kg gegenüber 400 mg/kg) festgestellt. Unter Berücksichtigung der Prüfwerte für Kinderspielflächen liegen bei den Proben MP 4 bis MP 6 generell Überschreitungen vor.

Mit Ausnahme der **PAK**-Konzentration der Probe MP 6 (25,376 mg/kg; vgl. Maßnahmenschwellenwert der LAWA-Liste: 10 – 100 mg/kg) sowie der zunächst bei der Probe MP 5 festgestellten und als erhöht zu beschreibenden **EOX**-Konzentration von 12 mg/kg erwiesen sich die Konzentrationen der **organischen Schadstoffparameter** bei den Proben MP 4 bis MP 6 dagegen als weitgehend unauffällig.

Mit dem Summenparameter EOX werden halogenierte Kohlenwasserstoffe erfasst. Da sich die Konzentrationen der halogenierten Verbindungen der LHKW (Chlor und Brom) sowie der PCB₆ (Chlor) als unauffällig erwiesen, konnten die EOX-Gehalte der Proben MP 3 (s. o.) und MP 5 nicht auf diese Parameter zurückgeführt bzw. die Relevanz weiterer halogenhaltiger Schadstoffparameter nicht ausgeschlossen werden.

Zur Klärung des Sachstands wurden beim Labor beim Material der Proben MP 3 und MP 5 GC-/MS-Screenings (Gaschromatographie / Massenspektrometrie) veranlasst. Eine Herleitung der EOX-Gehalte war aufgrund der Ergebnisse des Screenings allerdings nicht möglich, da im Laborbefund dokumentiert wird, dass bei den Proben zwar eine Vielzahl an n-, iso- und cyclo-Alkanen sowie auch Ester organischer Säuren identifiziert, aber keine halogenierten Verbindungen nachgewiesen wurden. Eine Diskrepanz zu den ursprünglich festgestellten EOX-Gehalten resultierte auch aus den Ergebnissen, die im Zuge von Neuaufschlüssen des Probenmaterials erzielt wurden. Bei diesen Neuaufschlüssen wurden deutlich geringere EOX-Gehalte von 0,5 mg/kg (MP 3) bzw. 0,4 mg/kg (MP 5) nachgewiesen.

Diese widersprüchlichen Untersuchungsergebnisse wurden vom Labor dahingehend interpretiert, dass im Zuge der ersten Einwaagen bei beiden Proben wahrscheinlich Farbreste

20.12.2017 26/36

Orientierende Untersuchung Ehem. Grabeland Teilflächen ehem. Garagenhof und Zufahrt Rosenweg in 58239 Schwerte

erfasst wurden. Diese Farbanteile werden vom Labor als nicht stark repräsentiert beschrieben, da bei den Neuaufschlüssen die oben beschriebenen Nachweise von deutlich geringeren EOX-Gehalten vorlagen.

Im Gegensatz zu weitgehend oder vollständig homogenen Medien (z. B. geogene Böden), lassen sich die heterogenen Medien der Boden-Bauschutt-Gemenge der Auffüllungen des ehem. Garagenhofs – trotz mehrfacher entsprechender Arbeitsschritte – nur bedingt Homogenisieren. Die oben beschriebenen Untersuchungsergebnisse sind dementsprechend als Bandbreite der im Probenmaterial enthaltenen EOX-Belastungen zu interpretieren. Der Summenparameter EOX wurde in keiner der zur Bewertung heranzuziehenden Verordnungen oder Regelwerke (vgl. Kapitel 4.1.1) erfasst bzw. sind bei Hinweisen auf erhöhte Gehalte – wie im Rahmen dieser Untersuchung – die jeweiligen Einzelsubstanzen zu identifizieren.

Im Zuge der Überprüfung der im Bereich des ehem. Garagenhofs oberflächennah anstehendem **geogenen Böden (Löß)** bzw. der Probe **MP C**, wurden keine Hinweise darauf festgestellt, dass ein relevanter Schadstofftransfer aus den Auffüllungen in tiefere Bodenschichten erfolgten. Dies gilt insbesondere für die relevanten Schwermetallparameter Pb, Cu und Ni. Bei den organischen Parametern lagen keine Nachweise von Gehalten oder lediglich die Nachweise von nicht umweltrelevanten Spurenkonzentrationen vor (PAK: 0,081 mg/kg sowie EOX: 0,6 mg/kg).

Diese Untersuchungsergebnisse sind primär aus den Ergebnissen der **Eluat**untersuchungen abzuleiten, da bei den aufgrund der im Feststoff durchgeführten Prüfungen relevanten Parametern Pb, Cu und Ni lediglich die Nachweise von sehr geringen Gehalten (generell Pb und Ni) bzw. lediglich die Nachweise von geringfügig erhöhten Gehalten (Cu; nur Proben MP 4 und MP 5) vorlagen. Die für einen über den Wirkungspfad **Boden – Sickerwasser – Grundwasser** orientierend zu Bewertung heranzuziehenden Prüfwerte der BBodSchV (vgl. Kapitel 4.1.2) werden auf Grundlage der vorliegenden Untersuchungsergebnisse ausschließlich beim Parameter As bzw. der Probe MP 4 überschritten. Diese Überschreitung ist als marginal zu kennzeichnen, da der im Prüfbericht dokumentierte As-Gehalt von 11 μg/l nur geringfügig über dem Prüfwert liegt, der mit einer Konzentration von 10 μg/l festgelegt wurde. Bei der Probe MP 4 wurde im Feststoff lediglich ein As-Gehalt von 15 mg/kg festgestellt. Es liegen somit offensichtlich leicht lösliche As-Verbindungen vor.

20.12.2017 27/36

Trotz des geringen Flurabstands des Grundwassers (vgl. Kapitel 5.2: ca. 1,2 m bis 1,8 m) liegen somit allenfalls Hinweise auf sehr geringe und lediglich latente Gefährdungen des Grundwassers vor.

Die im Bereich des **ehem. Garagenhofs** erzielten **Untersuchungsergebnisse** sind in Hinsicht auf den Wirkungspfad **Boden – Mensch** dahingehend **zusammenzufassen**, dass bei den **Oberböden** aus altlasten- und umwelttechnischer Sicht keine Handlungserfordernisse oder Nutzungseinschränkungen bestehen. Es ist allerdings davon auszugehen, dass aufgrund der Zusammensetzung des Materials (Boden-Bauschutt-Gemenge) das im Zuge der Baufeldfreimachung abgeschobene Material ohne weitere technische Maßnahmen (z. B. Absiebungen [Teilbereiche MP 4 bis MP 6]) oder umwelttechnische Prüfungen (Teilbereiche MP 4 und MP 6) nicht für einen Wiedereinbau auf dem Gelände geeignet bzw. einer externen Entsorgung zuzuführen ist.

Wie oben bereits beschrieben wurde, liegen bei der sog. **Packlage Restriktionen** für die geplante Nachnutzung vor bzw. sind Erfordernisse für Sicherungs- oder Sanierungsmaßnahmen gegeben, da im Zuge der Errichtung des Garagenhofs zur Stabilisierung des Untergrunds mit Schadstoffen belastete Bauschuttchargen angeschüttet wurden.

Es wird empfohlen die Boden Bauschutt-Gemenge, die mit einer durchschn. Mächtigkeit von ca. 0,6 m erschlossen wurden, bereits im Zuge der Baufeldfreimachung flächendeckend bis zum Aufschluss des unbelasteten geogenen Untergrunds aufzunehmen und einer ordnungsgemäßen und schadlosen Entsorgung zuzuführen. Die Art sowie der Umfang der Durchführung der fachgutachterlich zu begleitenden Sanierungsmaßnahme ist im Vorfeld mit dem Kreis Unna – Fachbereich Natur und Umwelt - Sachgebiet Wasser und Boden abzustimmen.

Nach der Durchführung einer entsprechenden Sanierungsmaßnahme sind auch Gefährdungen des Grundwassers auszuschließen. Bei einer unveränderten Flächennutzung ist bei den Schadstoffen der Packlage keine Exposition (orale, dermale oder inhalative Aufnahmen) gegeben bzw. besteht kein akuter Handlungsbedarf.

6.1.2 Zufahrt

Die aus Beton bestehende Fahrbahndeckschicht wird von einer äußerst geringmächtigen Tragschicht (auf Grundlage der zur Verfügung stehenden Sondierergebnisse: ca. 0,15 m) bzw. unter dieser Tragschicht unmittelbar von Böden des Geogens unterlagert. Es ist da-

20.12.2017 28/36

von auszugehen, dass im Zuge der Bauvorhaben die bestehende Zufahrt der "Platanenallee" (inkl. Tragschicht) einem Rückbau zugeführt wird. Somit sind in diesem Teilbereich primär abfalltechnische Aspekte relevant.

Dementsprechend ist an dieser Stelle lediglich der Hinweis erforderlich, dass beim Material der Tragschicht bzw. ausschließlich beim Parameter **Ni** nominell Überschreitungen von Prüfwerten der BBodSchV vorliegen. Bei einer im Prüfbericht ausgewiesenen Ni-Konzentration von 190 mg/kg werden sowohl der Prüfwert für Kinderspielflächen (70 mg/kg), als auch der Prüfwert für Wohngebiete (140 mg/kg) überschritten.

Bei allen anderen im Feststoff sowie im Eluat überprüften und altlastentechnisch relevanten Parametern wurden unauffällig-geringe Parameterkonzentrationen vorgefunden.

6.2 Erläuterung und abfalltechnische Bewertungen der Untersuchungsergebnisse

Abfalltechnische Bewertungen der Untersuchungsergebnisse auf Grundlage der Kriterien der TR Boden (2004) sowie der LAGA Richtlinie (1997/2003) für Bauschutt (vgl. Kapitel 4.2) sind den tabellarischen Darstellungen der Anlage 4.2 zu entnehmen.

Wird das in der **TR Boden** in Hinsicht auf den Anteil der enthaltenen mineralischen Fremdbestandteile festgelegte Kriterium (**mineralische Fremdbestandteile < 10 Vol.-%**) berücksichtigt, wurden Böden im Sinne dieser abfalltechnischen Vorgabe im Rahmen dieser Untersuchung nur in Form der Böden des Geogens (Probe **MP C**) erfasst. Für diese Böden ist folgende abfalltechnische Einstufung vorzunehmen:

MP C

oberflächennah anstehende geogene Böden des Garagenhofs max. Entnahmeintervall 0,5 – 2,0 m u. GOK Einstufung **TR Boden**: **Einbauklasse Z 0** abfalltechnisch relevanter Parameter: -

Anmerkung: Nur Untersuchungen des Feststoffs bzw. wurde auf Eluatansätze verzichtet.

Bei den **Oberböden** (**Proben MP 1 bis MP 3**) sind zunächst die **Vorsorgewerte** der BBodSchV zu berücksichtigen (s. auch Kapitel 6.1.1). Während bei der Probe **MP 2** (Oberböden des zentralen Teilbereichs des Garagenhofs) die Vorsorgewerte der anorganischen und der organischen Parameter eingehalten werden, wurden bei den Proben MP 1 und MP 3 verbreitet Überschreitungen festgestellt. Die Böden des zentralen Teilbereichs sind

20.12.2017 29/36

umwelttechnisch dementsprechend zur Herstellung einer durchwurzelbaren Bodenschicht oder zum Einbau in eine entsprechende Bodenschicht geeignet und können auf dem Baufeld oder extern entsprechend verwertet werden. Bei der Prüfung eines entsprechenden Verwertungswegs sind allerdings die "steinigen" Anteile (vorwiegend KRB 16) zu berücksichtigen.

Beim Material der Proben MP 1 und MP 3 wird infolge der Überschreitungen der Kriterien der Vorsorgewerte sowie infolge der erhöhten Anteile an mineralischen Fremdbestandteilen (i. d. R. deutlich mehr als 10 Vol.-%) von einer externen Verwertung ausgegangen. Für die abfalltechnischen Einstufungen werden dementsprechend Bewertungen der Untersuchungsergebnisse auf Grundlage der **LAGA Bauschutt** (1997/2003) angeführt. Optional werden für die Boden-Bauschutt-Gemenge auch die Kriterien der TR Boden berücksichtigt.

MP 1

Oberböden des nördlichen Bereichs des Garagenhofs max. Entnahmeintervall 0,0 – 0,4 m u. GOK

Vorsorgewerte der BBodSchV: nicht erfüllt

Überschreitungen bei den Parametern: **Pb**, **Cu** und **Ni** (Bodenart Lehm / Schluff)

Einstufung LAGA Bauschutt: Einbauklasse Z 0 abfalltechnisch relevanter Parameter: -

optionale Einstufung **TR Boden**: **Einbauklasse Z 1** abfalltechnisch relevante Parameter: **Pb**, **Cu**, **Ni**, **Hg**, **Zn** und **TOC** (im Feststoff)

MP 2

Oberböden des zentralen Bereichs des Garagenhofs max. Entnahmeintervall 0,0 – 0,3 m u. GOK

Vorsorgewerte der BBodSchV: erfüllt Überschreitungen bei den Parameter: -

Einstufung LAGA Bauschutt: Einbauklasse Z 1.1

abfalltechnisch relevante Parameter: KW und PAK (im Feststoff)

optionale Einstufung **TR Boden**: **Einbauklasse Z 2** abfalltechnisch relevante Parameter: **TOC** (im Feststoff)

20.12.2017 30/36

MP 3

Oberböden des südlichen Bereichs des Garagenhofs max. Entnahmeintervall 0,0 – 0,4 m u. GOK

Vorsorgewerte der BBodSchV: nicht erfüllt

Überschreitungen bei den Parametern: **PAK** (Humusgehalt < 8 %) sowie **Pb**, **Cu**, **Ni** und **Zn** (Bodenart Lehm / Schluff)

Einstufung LAGA Bauschutt: Einbauklasse Z 1.1

abfalltechnisch relevante Parameter: KW und PAK (im Feststoff)

optionale Einstufung **TR Boden**: **Einbauklasse > Z 2** abfalltechnisch relevante Parameter: **TOC** (im Feststoff)

Ausschließlich auf Grundlage der Kriterien der LAGA Bauschutt erfolgen die abfalltechnischen Bewertungen der Proben der "Packlage" des ehem. Garagenhofs (MP 4 bis MP 6), des Betons der Fahrbahndecke der Zufahrt (MP I) sowie der Tragschichten der Zufahrt (MP II).

MP 4

Packlage des nördlichen Bereichs des Garagenhofs max. Entnahmeintervall 0,3 – 0,9 m u. GOK

Einstufung LAGA Bauschutt: Einbauklasse Z 1.2 abfalltechnisch relevante Parameter: KW und PCB (im Feststoff) sowie As (im Eluat)

MP 5

Packlage des zentralen Bereichs des Garagenhofs max. Entnahmeintervall 0,2 – 0,7 m u. GOK

Einstufung LAGA Bauschutt: Einbauklasse Z 1.2

abfalltechnisch relevante Parameter: PAK (im Feststoff)

Anmerkung: Bei den chemischen Untersuchungen ergaben sich Hinweise darauf, dass Teilchargen erhöhte EOX-Gehalte aufweisen können. Überschreitungen des Zuordnungswerts Z 2 für EOX (10 mg/kg) sind dementsprechend nicht auszuschließen.

MP 6

Packlage des südlichen Bereichs des Garagenhofs max. Entnahmeintervall 0,4 – 1,0 m u. GOK

Einstufung LAGA Bauschutt: Einbauklasse Z 2 abfalltechnisch relevante Parameter: PAK (im Feststoff)

20.12.2017 31/36

MP I

Beton der Zufahrt max. Entnahmeintervall 0,0 – 0,2 m u. GOK

Einstufung LAGA Bauschutt: <u>zunächst</u> Einbauklasse > Z 2 abfalltechnisch relevanter Parameter: <u>ausschließlich</u> elektr. Leitfähigkeit (im Feststoff); alle anderen Parameter im Feststoff und im Eluat dagegen Z 0.

Anmerkung: Frisch gebrochener oder im Falle dieser Untersuchung frisch aufgestemmter / zermahlener Beton weist auf den Bruchflächen nicht durchkarbonisiertes Calciumhydroxid auf, das bei entsprechendem Material im Eluatansatz zu sehr deutlich erhöhten Werten der elektrischen Leitfähigkeiten führen kann. Durch atmosphärisches oder in Wasser gelöstes CO₂ tritt im Laufe der Zeit eine Karbonatisierung ein und die Werte der Leitfähigkeiten werden entsprechend reduziert.

Dementsprechend ist mit hinreichender Sicherheit davon auszugehen, dass bei der **Entsorgung** sehr deutlich **niedrigere abfalltechnische Einstufungen** (**Einbau-klasse Z 0 / Z 1.1**) berücksichtigt werden können. Baubegleitende Prüfungen werden empfohlen.

MP II

Tragschichten der Zufahrt (vorwiegend Betonbruch) max. Entnahmeintervall 0,17 – 0,3 m u. GOK

Einstufung LAGA Bauschutt: <u>zunächst</u> Einbauklasse Z 2 abfalltechnisch relevanter Parameter: <u>ausschließlich</u> elektr. Leitfähigkeit (im Feststoff); alle anderen Parameter im Feststoff und im Eluat dagegen Z 0.

Anmerkung zur Leitfähigkeit: s. Probe MP I.

Dementsprechend ist auch bei dieser Charge mit hinreichender Sicherheit davon auszugehen, dass bei der **Entsorgung** deutlich **niedrigere abfalltechnische Einstufungen** (**Einbauklasse Z 0 / Z 1.1**) berücksichtigt werden können. Baubegleitende Prüfungen werden empfohlen.

Abschließend ist darauf hinzuweisen, dass in Abstimmung mit den zu beauftragenden Entsorgungsfachbetrieben bauvorbereitend oder baubegleitend ggf. weitere deklarationsanalytische Untersuchungen durchzuführen sind. Die Ergebnisse von entsprechenden Untersuchungen können innerhalb einer gewissen Bandbreite von den Ergebnissen der vorliegenden Orientierenden Untersuchung abweichen.

Sollten sich im Zuge der Maßnahmen des Erdbaus Hinweise auf bisher nicht lokalisierte Belastungszonen ergeben, sind unmittelbar die zuständige Fachbehörde zu informieren und ein Fachgutachter heranzuziehen. Bei den Maßnahmen des Erdbaus sind die ein-

20.12.2017 32/36

schlägigen Vorschriften des Arbeits- und Gesundheitsschutzes zu beachten. Eine ordnungsgemäße und schadlose Entsorgung ist zu gewährleisten.

Zusammenfassung, Empfehlungen zur weiteren Vorgehensweise und Hinweise

Die Gemeinnützige Wohnungsbaugenossenschaft Schwerte eG, Rathausstraße 24a in 58239 Schwerte, plant auf dem Grundstück des sog. "Ehem. Grabelands" (Teilfläche des Flurstücks 70 in der Flur 7 der Gemarkung Rosen) die Umsetzung einer Wohnbebauung (Mehrfamilien- und Doppelhäuser mit angegliederten Verkehrs- und Grünflächen).

Die Projektfläche wurde bis ca. 2006 als Standort einer Kleingartenanlage genutzt. Im Südosten der Kleingartenanlage befand sich ein langgestrecktes (?Garagen-) Gebäude sowie Parkplatzflächen. Dieser Teilbereich des sog. ehem. Garagenhof war bisher nicht Gegenstand von umwelt- / altlastentechnischen Untersuchungen. Ebenfalls unberücksichtigt blieb im Rahmen einer früheren Untersuchung (2015) die Teilfläche einer am östlichen Rand des Grabelands liegenden Zufahrt (sog. "Platanenallee").

Die in den angeführten Teilbereichen im Rahmen der hier zu dokumentierenden Untersuchung durchgeführten Sondierungen erbrachten in den Auffüllungen den Nachweis von folgenden Schichtfolgen:

- Garagenhof
 Oberböden (Gemenge aus Böden u. Bauschutt i.w.S) bis ca. 0,3 m / 0,4 m u. GOK
 Packlage (überwiegend massiver Bauschutt) bis ca. 0,7 m / 1,0 m u. GOK
- Zufahrt
 Fahrbahndecke aus Beton bis ca. 0,17 m / 0,2 m u. GOK
 Tragschicht (ganz überwiegend Betonbruch) bis ca. 0,3 m u. GOK

Im Zuge der laboranalytischen Bearbeitung von Mischproben der unterschiedlichen Varietäten der Auffüllungen ergaben sich bei den Proben der Oberböden keine Hinweise auf gefährdungsrelevant erhöhte Schadstoffgehalte.

In der zur Stabilisierung des Untergrunds des Garagenhofs angeschütteten Packlage liegen dagegen relevant mit Schadstoffen belastete Bauschuttanteile vor. Insbesondere die nachgewiesenen Gehalte der Parameter Pb, Cu, Ni und z. T. auch von Benzo(a)pyren führen zu Einschränkungen in Hinsicht auf die geplante Nutzung. Zur Realisierung der vorge-

20.12.2017 33/36

Orientierende Untersuchung Ehem. Grabeland Teilflächen ehem. Garagenhof und Zufahrt Rosenweg in 58239 Schwerte

sehenen Nutzungsszenarien (Wohnen, Kinderspielflächen, Wohngärten) sind Sanierungsmaßnahmen in Form eines Bodenaustauschs erforderlich. Die entsprechenden Maßnahmen sind im Vorfeld und im Detail mit dem Kreis Unna – Fachbereich Natur und Umwelt - Sachgebiet Wasser und Boden – abzustimmen. Hinweise auf Belastungen der unterlagernden geogenen Böden liegen nicht vor.

Nominell sind auch bei den Tragschichten der Zufahrt Restriktionen für die Nachnutzung festzustellen. Es ist jedoch davon auszugehen, dass die Zufahrt bei der Realisierung der Bauvorhaben einem Rückbau zugeführt wird.

Bei einer unveränderten Folgenutzung der Teilflächen dieser Untersuchung liegt kein akuter Handlungs- oder Sanierungsbedarf vor, da die mit Schadstoffen belasteten Auffüllungsvarietäten in Hinsicht auf den Wirkungspfad Boden – Mensch nicht exponiert sind und allenfalls ein sehr geringes und als latent zu beschreibendes Gefährdungspotenzial ffür das Grundwasser vorliegt.

In Hinsicht auf die Verwertung von baubedingt anfallenden Chargen ist zunächst darauf hinzuweisen, dass die im zentralen Bereich des ehem. Garagenhofs anstehenden Oberböden die Vorsorgewerte der BBodSchV erfüllen und die entsprechend abgeschobenen Oberböden dieser Teilfläche unter Berücksichtigung von umwelttechnischen Aspekten auf dem Gelände wieder eingebaut oder extern zur Herstellung einer durchwurzelbaren Bodenschicht verwertet werden können. Die "steinigen" Anteile der entsprechenden Böden sind bei der Prüfung von Verwertungswegen zu berücksichtigen.

Im nördlichen sowie im südlichen Teilbereich des Garagenhofs liegen dagegen bei den Oberböden verbreitet Überschreitungen von Vorsorgewerten vor. Dementsprechend ist eine externe Verwertung / Entsorgung vorauszusetzen. Abfalltechnisch sind diese Chargen als Boden-Bauschutt-Gemenge (Anteil mineralischer Fremdbestandteile > 10 Vol. %) anzusprechen bzw. auf Grundlage der LAGA-Richtlinie (1997/2003) für Bauschutt im Sinne der Einbauklassen Z 0 / Z 1.1 zu bewerten.

Die sanierungsrelevant belasteten Gemenge der Packlage sind aufgrund der vorliegenden Untersuchungsergebnisse als Bauschutt der Einbauklassen Z 1.2 / Z 2 zu bewerten. Es liegen Hinweise darauf vor, dass bei Teilchargen auch Überschreitungen der Kriterien der Einbauklasse Z 2 der LAGA Bauschutt vorliegen könnten.

20.12.2017 34/36

Aus den Ergebnissen von im Feststoff durchgeführten Untersuchungen einer Probe der Böden des geogenen Untergrunds resultiert eine Einstufung in die Einbauklasse Z 0 der TR Boden.

Für die abfalltechnischen Einstufungen erwies sich beim Beton (> Z 2) sowie der Tragschicht der Zufahrt (Z 2) ausschließlich der Wert der elektr. Leitfähigkeit als relevant. Die erhöhten Werte resultieren aus den bei "frischen" Proben zwangsläufig enthaltenen erhöhten Anteilen von Calciumhydroxid. Da bei allen übrigen Parametern die Kriterien der Einbauklasse Z 0 der LAGA Bauschutt eingehalten werden, ist davon auszugehen, dass bei karbonatisiertem "gealtertem" Material Einstufungen im Sinne der Einbauklassen Z 0 / Z 1 zu vergeben sein werden.

Das vorliegende Gutachten ist dem Kreis Unna – Fachbereich Natur und Umwelt - Sachgebiet Wasser und Boden zur Kenntnisnahme, Prüfung und Stellungnahme zu übermitteln.

Der Gutachter ist zu einer ergänzenden Stellungnahme aufzufordern, sofern sich Fragen ergeben, die in dem vorliegenden Gutachten nicht oder abweichend erörtert wurden.

48161 Münster, den 20. Dezember 2017

Dipl.-Geol. Dr. U. Heede

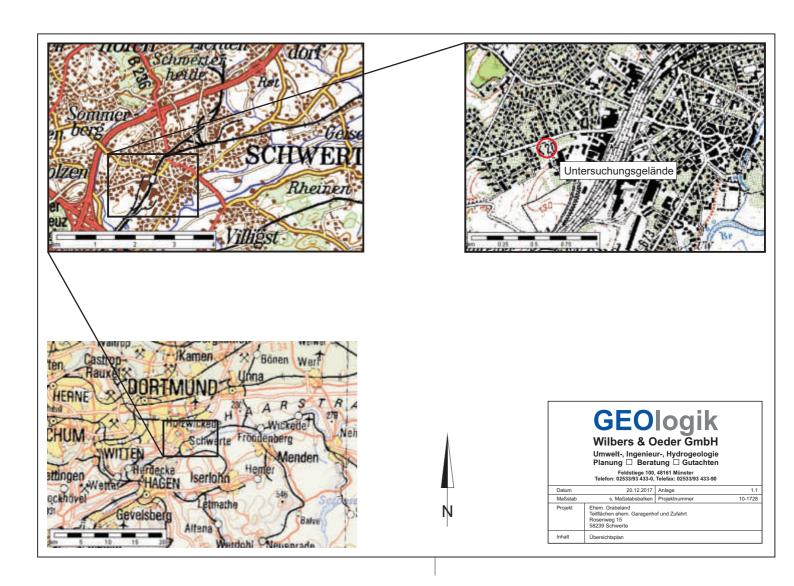
20.12.2017 35/36

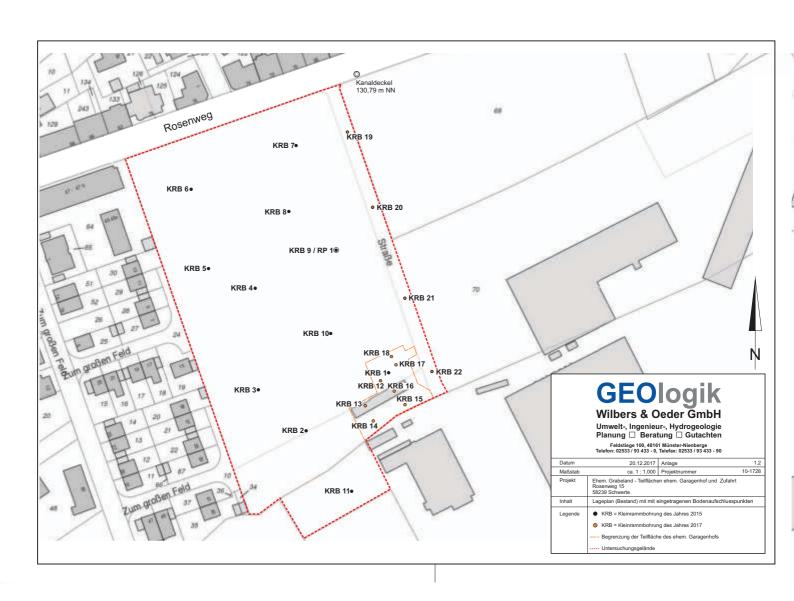
Anlagenverzeichnis

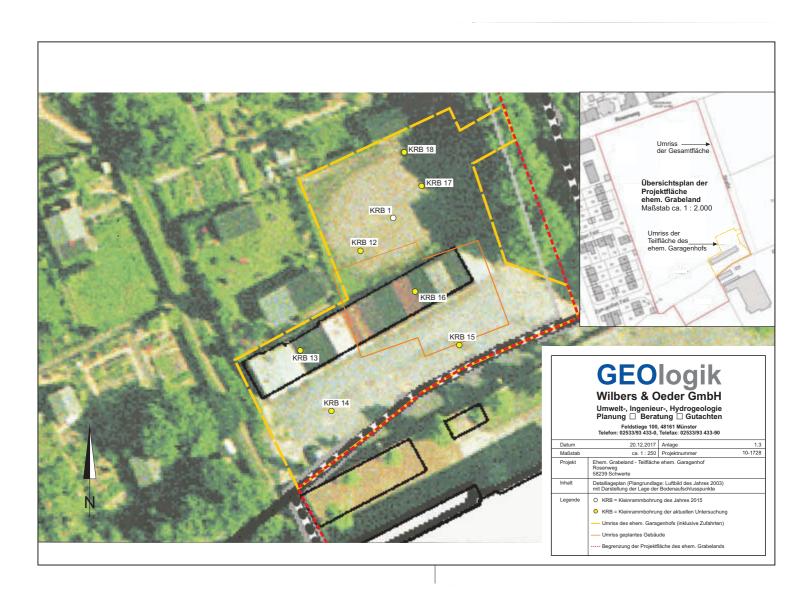
- 1 Lagepläne
 - 1.1 Übersichtsplan
 - 1.2 Lageplan (Bestand) mit eingetragenen Bodenaufschlusspunkten
 - 1.3 Detaillageplan (Plangrundlage: Luftbild des Jahres 2003) mit Darstellung der Lage der Bodenaufschlusspunkte
- Darstellung von Schichtenprofilen der Kleinrammbohrungen
- 3 Dokumentation der Geländearbeiten Höhennivellement
 - 4 Ergebnisse der chemischen Untersuchungen
 - 4.1 Prüfberichte des Labors Bodenmischproben
 - 4.2 Tabellarische Darstellungen der Ergebnisse der chemischen Untersuchungen

20.12.2017 36/36

Anlagen


20.12.2017 37/36




Anlagen 1

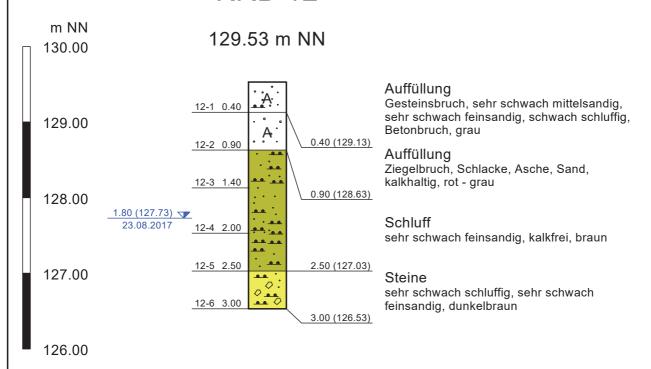
Lagepläne

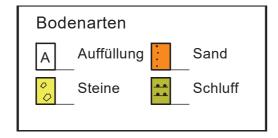
- Übersichtsplan
- Lageplan (Bestand) mit eingetragenen Bodenaufschlusspunkten
- Detaillageplan
 (Plangrundlage: Luftbild des Jahres 2003)
 mit Darstellung der Lage
 der Bodenaufschlusspunkte

Anlage 2

Darstellung von Schichtenprofilen der Kleinrammbohrungen

Kerstingskamp 12 48159 Münster Tel.: 0251 / 20127-0


ehem. Grabeland


Rosenweg 58239 Schwerte

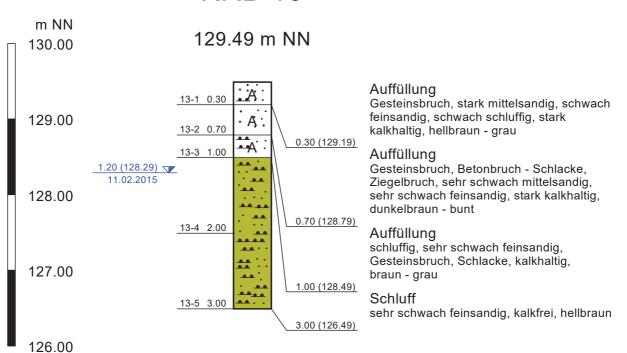
Projekt-Nr.	10-1728
Anlage	2.1

Darstellung eines Schichtenprofils

Maßstab der Höhe 1:50

Kerstingskamp 12 48159 Münster Tel.: 0251 / 20127-0

ehem. Grabeland

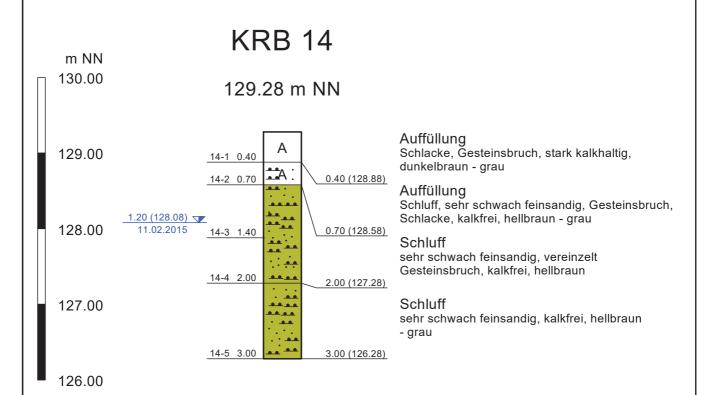

Rosenweg, 58239 Schwerte

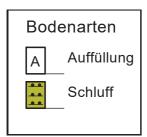

Projekt-Nr. 10-1728

Anlage 2.2

Darstellung eines Schichtenprofils

Maßstab der Höhe 1:50



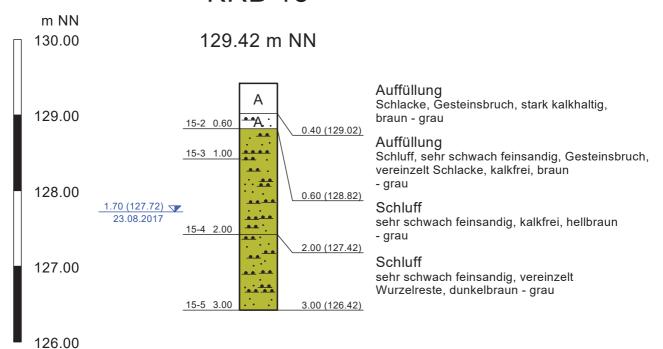

Kerstingskamp 12 48159 Münster Tel.: 0251 / 20127-0 ehem. Grabeland

Rosenweg, 58239 Schwerte

Projekt-Nr. 10-1728
Anlage 2.3

Darstellung eines Schichtenprofils

Kerstingskamp 12 48159 Münster Tel.: 0251 / 20127-0 ehem. Grabeland

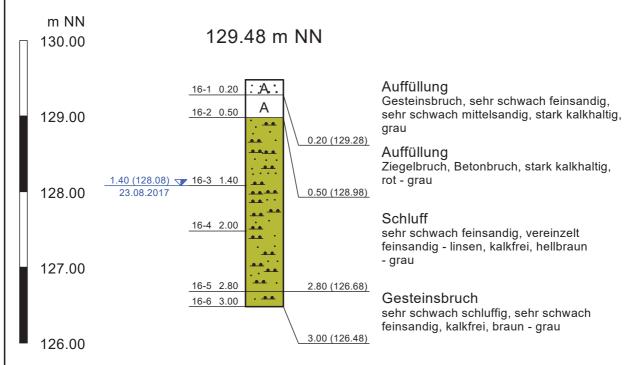

Projekt-Nr. 10-1728
Anlage

Rosenweg, 58239 Schwerte

2.4

Darstellung eines Schichtenprofils

Maßstab der Höhe 1:50


Kerstingskamp 12 48159 Münster Tel.: 0251 / 20127-0 ehem. Grabeland

Projekt-Nr. 10-1728
Anlage 2.5

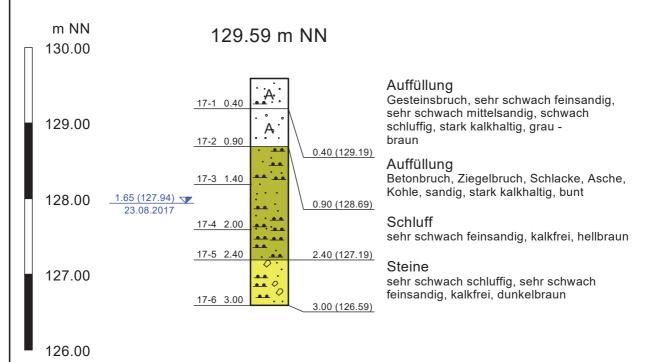
Rosenweg, 58239 Schwerte

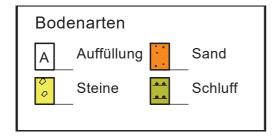
Darstellung eines Schichtenprofils

Maßstab der Höhe 1:50

Kerstingskamp 12 48159 Münster Tel.: 0251 / 20127-0

ehem. Grabeland


Rosenweg, 58239 Schwerte

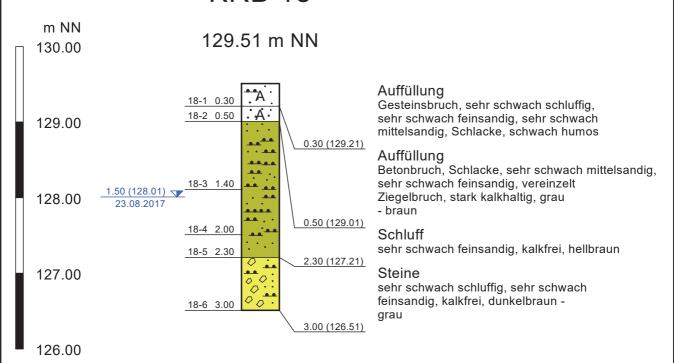

Projekt-Nr.	10-1728
Anlage	0.0

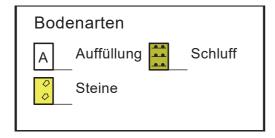
2.6

Darstellung eines Schichtenprofils

Maßstab der Höhe 1:50

Kerstingskamp 12 48159 Münster Tel.: 0251 / 20127-0


ehem. Grabeland

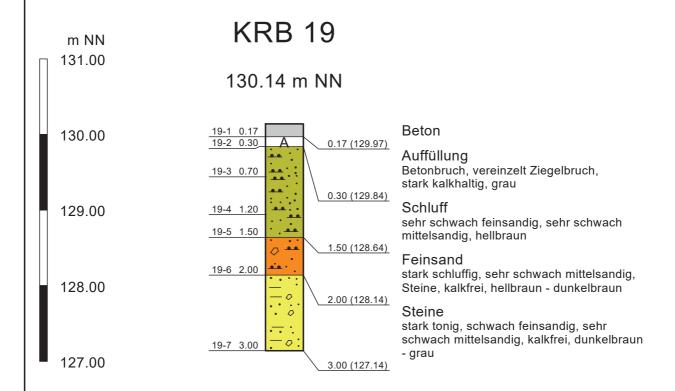

Rosenweg, 58239 Schwerte

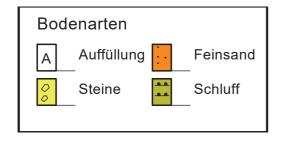
Projekt-Nr. 10-1728
Anlage 2.7

Darstellung eines Schichtenprofils

Maßstab der Höhe 1:50

Feldstiege 100 48161 Münster Tel.: 02533 / 93 433 - 0


ehem. Grabeland


Rosenweg, 58239 Schwerte

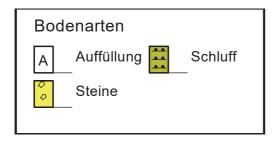
Projekt-Nr. 10-1728

Anlage 2.8

Darstellung eines Schichtenprofils

Feldstiege 100 48161 Münster Tel.: 02533 / 93 433 - 0

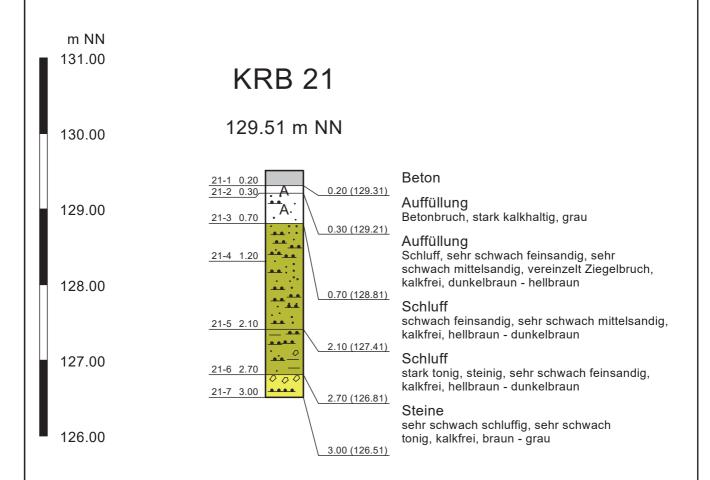
ehem. Grabeland

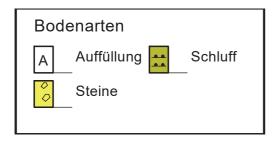

Rosenweg, 58239 Schwerte

Projekt-Nr.	10-1728
Anlage	0.0

2.9

Darstellung eines Schichtenprofils

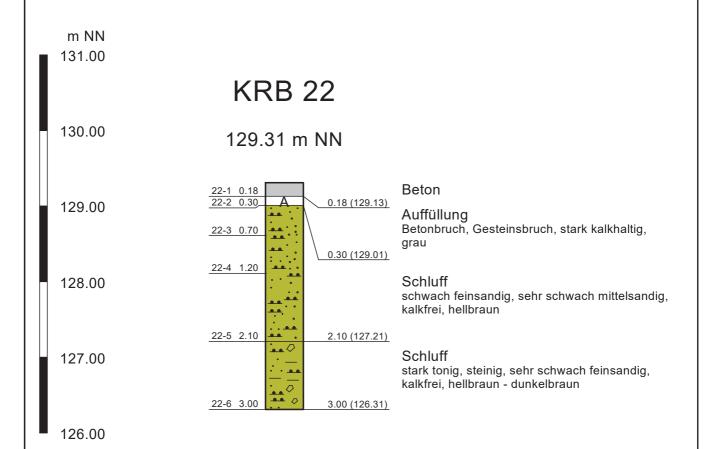

Feldstiege 100 48161 Münster Tel.: 02533 / 93 433 - 0

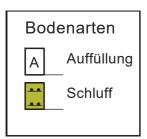

ehem. Grabeland

Rosenweg, 58239 Schwerte

Projekt-Nr.	10-1728
Anlage	2.10

Darstellung eines Schichtenprofils


Feldstiege 100 48161 Münster Tel.: 02533 / 93 433 - 0


ehem. Grabeland

Rosenweg, 58239 Schwerte

Projekt-Nr.	10-1728
Anlage	2.11

Darstellung eines Schichtenprofils

Anlagen 3

Dokumentation der Geländearbeiten -Höhennivellement

GEOlogik

Höhennivellement

Wilbers & Oeder GmbH

Projekt-Nr.: 10-1728 Anlage 3, Seite 1/1

Projekt: Schwerte Grabeland

Datum: 23.08.2017 und 04.10.2017

Ort der Messung: Schwerte

Bezugspunkt: Kanaldeckel 33602 (130,79 m NHN)

Name des Schreibers: Boateng

Name des Beobachters: Sommer

Instrumente: Ni 1

			∆h=(R-V)	H = Bezugspunk	t+∆h
	Lattena	blesung			
Punkt	Rückblick	Vorblick	Höhenunter-	Höhe des	Punkt
			schied	Punktes	
	R	V	Δh	(m NHN)	
	m	m			
1	2	3	4	5	6

Kanaldeckel	1,215			130,79	Kanaldeckel
ZP 1		2,093	-0,878	129,91	ZP 1
ZP 1	1,245			129,91	ZP 1
KRB 18		1,648	-0,403	129,51	KRB 18
KBR 17		1,567	-0,322	129,59	KBR 17
KRB 12		1,622	-0,377	129,54	KRB 12
KRB 16		1,676	-0,431	129,48	KRB 16
KRB 15 GOK		1,732	-0,487	129,43	KRB 15 GOK
KRB 15 POK		1,575	-0,330	129,58	KRB 15 POK
KRB 13		1,664	-0,419	129,49	KRB 13
KRB 14		1,871	-0,626	129,29	KRB 14
Kanaldeckel	1,027			130,79	Kanaldeckel
KRB 19		1,677	-0,650	130,14	KRB 19
KRB 20		1,968	-0,941	129,85	KRB 20
KRB 20	1,317			129,85	KRB 20
KRB 21		1,660	-0,343	129,51	KRB 21
KRB 22		1,857	-0,540	129,31	KRB 22

Bemerkungen:

ZP = Zwischenpunkt (Umsetzpunkt)

Anlagen 4

Ergebnisse der chemischen Untersuchungen

- Prüfberichte des Labors
- Tabellarische Darstellung der Ergebnisse der chemischen Untersuchungen

Anlage 4.1

Prüfberichte des Labors

T

Laboratorien Dr. Döring Haferwende 12 28357 Bremen

GEOlogik Wilbers & Oeder GmbH Kerstingskamp 12

48159 MÜNSTER

5. September 2017

PRÜFBERICHT 31081705

Auftragsnr. Auftraggeber: 10-1728

Projektbezeichnung: Grabeland Schwerte - Teilfläche Garagenhof

Probenahme: durch Auftraggeber am 24.08.2017

Probentransport: durch Laboratorien Dr. Döring GmbH am 30.08.2017

Probeneingang: 31.08.2017

Prüfzeitraum: 31.08.2017 – 05.09.2017

Probennummer: 47429 - 47434 / 17

Probenmaterial: Boden

Verpackung: Weißglas (0,5 L)

Bemerkungen: -

Sonstiges: Der Messfehler dieser Prüfungen befindet sich im üblichen Rahmen. Näheres teilen wir Ihnen auf Anfrage gerne mit.

Die Prüfergebnisse beziehen sich ausschließlich auf die angegebenen Prüfgegenstände. Eine auszugsweise Vervielfältigung dieses Prüfberichts bedarf der schriftlichen Genehmigung durch die Laboratorien Dr. Döring GmbH.

Analysenbefunde: Seite 3 - 8

Messverfahren: Seite 2

Qualitätskontrolle:

Dr. Jens Krause (stellv. Laborleiter)

M.Sc. Malte Haak (Projektleiter)

Seite 1 von 8

Probenvorbereitung: DIN 19747

Messverfahren: Trockenmasse DIN EN 14346
TOC DIN EN 13137
Kohlenwasserstoffe (GC;F) DIN EN 14039

Phenol-Index DIN 38409-H16
Cyanide (F) DIN ISO 11262
Cyanide (E) DIN 38405-13
Chlorid DIN EN ISO 10304-1
Sulfat DIN EN ISO 10304-1

Arsen (F; E) DIN EN ISO 11885 (E22); -17294-2
Blei (F; E) DIN EN ISO 11885 (E22); -17294-2
Cadmium (F; E) DIN EN ISO 11885 (E22); -17294-2
Chrom (F; E) DIN EN ISO 11885 (E22); -17294-2
Kupfer (F; E) DIN EN ISO 11885 (E22); -17294-2
Nickel (F; E) DIN EN ISO 11885 (E22); -17294-2

Quecksilber (F; E) DIN EN ISO 12846 (E12)
Thallium (F) DIN EN ISO 17294-2

Zink (F; E) DIN EN ISO 11885 (E22); -17294-2

PAK DIN ISO 18287
PCB DIN EN 15308
BTEX DIN 38407-F9

LHKW DIN EN ISO 10301 (F4,HS-GC/MS)

EOX DIN 38414-S17
pH-Wert (W,E) DIN 38404-C5
el. Leitfähigkeit DIN EN 27888 (C8)
Eluat DIN EN 12457-4
Aufschluss DIN EN 13657

Prüfbericht 31081705.doc

Seite 2 von 8

Labornummer	47429	47430	47431	47432
Probenbezeichnung	MP 1	MP 2	MP 3	MP 4
Entnahmetiefe	0,0-0,4 m	0,0-0,3 m	0,0-0,4 m	0,3-0,9 m
Dimension	[mg/kg TS]	[mg/kg TS]	[mg/kg TS]	[mg/kg TS]
Trockenmasse [%]	87,8	93,5	86,7	89,3
TOC [%]	1,4	1,9	10,6	5,8
Kohlenwasserstoffe, n-C ₁₀₋₂₂	< 5	12	15	23
Kohlenwasserstoffe, n-C ₁₀₋₄₀	35	140	120	370
Cyanid, gesamt	< 0,05	< 0,05	< 0,05	0,48
EOX	0,3	< 0,1	4,4	0,9
Arsen	10	11	13	15
Blei	74	30	140	120
Cadmium	0,7	0,8	0,7	0,5
Chrom	12	14	23	25
Kupfer	100	38	110	470
Nickel	81	38	72	470
Quecksilber	< 0,1	< 0,1	0,2	0,3
Thallium	0,3	0,2	0,4	0,3
Zink	110	77	240	360
DOD 00	0.004	0.004	0.004	0.004
PCB 28	< 0,001	< 0,001	< 0,001	< 0,001
PCB 52	< 0,001	< 0,001	< 0,001	0,002
PCB 101	< 0,001	< 0,001	0,001	0,022
PCB 138	0,001	< 0,001	0,002	0,130
PCB 153	0,001	< 0,001	0,002	0,093
PCB 180	0,001	< 0,001	0,002	0,099
Summe PCB (6 Kong.)	0,003	n.n.	0,007	0,346
Naphthalin	0,002	0,010	0,018	0,028
Acenaphthylen	0,001	0,005	0,012	0,005
Acenaphthen	0,002	0,006	0,013	0,009
Fluoren	0,002	0,007	0,015	0,010
Phenanthren	0,028	0,104	0,297	0,190
Anthracen	0,007	0,016	0,034	0,035
Fluoranthen	0,066	0,204	0,537	0,268
Pyren	0,051	0,168	0,372	0,202
Benzo(a)anthracen	0,040	0,122	0,306	0,248
Chrysen	0,037	0,113	0,302	0,243
Benzo(b)fluoranthen	0,059	0,276	0,520	0,364
Benzo(k)fluoranthen	0,019	0,081	0,111	0,081
Benzo(a)pyren	0,035	0,141	0,218	0,136
Indeno(1,2,3-cd)pyren	0,025	0,149	0,213	0,114
Dibenzo(a,h)anthracen	0,005	0,031	0,048	0,026
Benzo(g,h,i)perylen	0,024	0,133	0,169	0,110
Summe PAK (EPA)	0,403	1,566	3,185	2,069

Labornummer	47429	47430	47431	47432
Probenbezeichnung	MP 1	MP 2	MP3	MP 4
Entnahmetiefe	0,0-0,4 m	0,0-0,3 m	0,0-0,4 m	0,3-0,9 m
Dimension	[mg/kg TS]	[mg/kg TS]	[mg/kg TS]	[mg/kg TS]
Benzol	< 0,01	< 0,01	< 0,01	0,11
Toluol	< 0,01	0,01	0,01	0,19
Ethylbenzol	< 0,01	< 0,01	0,01	0,01
Xylole	< 0,01	0,03	0,13	0,26
Trimethylbenzole	< 0,01	< 0,01	0,03	0,12
Summe BTEX	n.n.	0,04	0,18	0,69
Vinylchlorid	< 0,01	< 0,01	< 0,01	< 0,01
1,1-Dichlorethen	< 0,01	< 0,01	< 0,01	< 0,01
Dichlormethan	< 0,01	< 0,01	< 0,01	< 0,01
1,2-trans-Dichlorethen	< 0,01	< 0,01	< 0,01	< 0,01
1,1-Dichlorethan	< 0,01	< 0,01	< 0,01	< 0,01
1,2-cis-Dichlorethen	< 0,01	< 0,01	< 0,01	< 0,01
Tetrachlormethan	< 0,01	< 0,01	< 0,01	< 0,01
1,1,1-Trichlorethan	< 0,01	< 0,01	< 0,01	< 0,01
Chloroform	< 0,01	< 0,01	< 0,01	< 0,01
1,2-Dichlorethan	< 0,01	< 0,01	< 0,01	< 0,01
Trichlorethen	0,09	< 0,01	0,05	0,07
Dibrommethan	< 0,01	< 0,01	< 0,01	< 0,01
Bromdichlormethan	< 0,01	< 0,01	< 0,01	< 0,01
Tetrachlorethen	0,07	< 0,01	0,01	0,09
1,1,2-Trichlorethan	< 0,01	< 0,01	< 0,01	< 0,01
Dibromchlormethan	< 0,01	< 0,01	< 0,01	< 0,01
Tribrommethan	< 0,01	< 0,01	< 0,01	< 0,01
Summe LHKW	0,16	n.n.	0,06	0,16

Labornummer	47429	47430	47431	47432
Probenbezeichnung	MP 1	MP 2	MP 3	MP 4
Entnahmetiefe	0,0-0,4 m	0,0-0,3 m	0,0-0,4 m	0,3-0,9 m
Dimension	ELUAT [μg/L]	ELUAT [μg/L]	ELUAT [μg/L]	ELUAT [μg/L]
pH-Wert bei 20 °C el. Leitfähigkeit [μS/cm] bei 25 °C Phenol-Index Cyanid, gesamt	8,5 86 < 10 < 5	8,1 155 < 10 < 5	8,2 142 < 10 < 5	9,0 86 < 10 < 5
Chlorid Sulfat	990 3.600	1.400 12.000	990 21.000	1.800 5.700
Arsen Blei Cadmium Chrom Kupfer Nickel Quecksilber Zink	< 2,0 < 0,2 < 0,2 < 0,3 3,5 < 1,0 < 0,1 < 2,0	< 2,0 0,3 < 0,2 0,3 5,5 1,8 < 0,1 4,8	< 2,0 0,6 < 0,2 4,2 3,8 1,2 < 0,1 3,4	11 0,4 < 0,2 1,0 17 5,5 < 0,1 2,9

fon 04 21 · 2 07 22 75 fax 04 21 · 27 55 22

haferwende 12

28357 bremen

fon 05 11 · 26 13 99 64 fax 05 11 · 2 62 67 90

freboldstraße 16

30455 hannover

Labornummer	47433	47434	
Probenbezeichnung	MP 5	MP 6	
Entnahmetiefe	0,2-0,7 m	0,4-1,0 m	
Dimension	[mg/kg TS]	[mg/kg TS]	
Difference	[mg/kg 10]	[mg/kg 10]	
Trockenmasse [%]	91,0	82,9	
TOC [%]	1,7	1,3	
Kohlenwasserstoffe, n-C ₁₀₋₂₂	26	16	
Kohlenwasserstoffe, n-C ₁₀₋₄₀	300	110	
Cyanid, gesamt	< 0,05	0,19	
EOX	12	0,1	
		0,1	
Arsen	14	13	
Blei	74	750	
Cadmium	0,5	0,6	
Chrom	23	22	
Kupfer	170	160	
Nickel	97	92	
Quecksilber	< 0,1	< 0,1	
Thallium	0,2	0,3	
Zink	290	280	
PCB 28	< 0,001	< 0,001	
PCB 52	< 0,001	< 0,001	
PCB 101	0,002	0,001	
PCB 138	0,010	0,004	
PCB 153	0,008	0,004	
PCB 180	0,011	0,003	
Summe PCB (6 Kong.)	0,031	0,012	
Naphthalin	0,039	0,019	
Acenaphthylen	0,022	0,101	
Acenaphthen	0,073	0,102	
Fluoren	0,086	0,240	
Phenanthren	1,02	2,70	
Anthracen	0,123	0,530	
Fluoranthen	1,52	4,59	
Pyren	1,06	3,16	
Benzo(a)anthracen	0,666	2,75	
Chrysen	0,660	2,50	
Benzo(b)fluoranthen	1,10	3,25	
Benzo(k)fluoranthen	0,298	0,993	
Benzo(a)pyren	0,589	1,92	
Indeno(1,2,3-cd)pyren	0,406	1,19	
Dibenzo(a,h)anthracen	0,080	0,291	
Benzo(g,h,i)perylen	0,382	1,04	
Summe PAK (EPA)	8,124	25,376	

Labornummer	47433	47434	
Probenbezeichnung	MP 5	MP 6	
Entnahmetiefe	0,2-0,7 m	0,4-1,0 m	
Dimension	[mg/kg TS]	[mg/kg TS]	
Benzol	< 0,01	< 0,01	
Toluol	< 0,01	< 0,01	
Ethylbenzol	< 0,01	< 0,01	
Xylole	< 0,01	< 0,01	
Trimethylbenzole	< 0,01	< 0,01	
Summe BTEX	n.n.	n.n.	
Vinylchlorid	< 0,01	< 0,01	
1,1-Dichlorethen	< 0,01	< 0,01	
Dichlormethan	< 0,01	< 0,01	
1,2-trans-Dichlorethen	< 0,01	< 0,01	
1,1-Dichlorethan	< 0,01	< 0,01	
1,2-cis-Dichlorethen	< 0,01	< 0,01	
Tetrachlormethan	< 0,01	< 0,01	
1,1,1-Trichlorethan	< 0,01	< 0,01	
Chloroform	< 0,01	< 0,01	
1,2-Dichlorethan	< 0,01	< 0,01	
Trichlorethen	< 0,01	< 0,01	
Dibrommethan	< 0,01	< 0,01	
Bromdichlormethan	< 0,01	< 0,01	
Tetrachlorethen	< 0,01	< 0,01	
1,1,2-Trichlorethan	< 0,01	< 0,01	
Dibromchlormethan	< 0,01	< 0,01	
Tribrommethan	< 0,01	< 0,01	
Summe LHKW	n.n.	n.n.	

	17.100	47.40.4	
Labornummer	47433	47434	
Probenbezeichnung	MP 5	MP 6	
Entnahmetiefe	0,2-0,7 m	0,4-1,0 m	
Dimension	ELUAT [µg/L]	ELUAT [μg/L]	
pH-Wert bei 20 °C el. Leitfähigkeit [μS/cm] bei 25 °C Phenol-Index Cyanid, gesamt	8,8 104 < 10 < 5	7,6 88 < 10 < 5	
Chlorid Sulfat	1.500 12.000	990 11.000	
Arsen Blei Cadmium Chrom Kupfer Nickel Quecksilber Zink	5,1 1,6 < 0,2 1,9 18 6,1 < 0,1 9,8	2,4 2,1 < 0,2 < 0,3 8,0 2,2 < 0,1 2,0	

Laboratorien Dr. Döring Haferwende 12 28357 Bremen

GEOlogik Wilbers & Oeder GmbH Kerstingskamp 12

48159 MÜNSTER

14. September 2017

PRÜFBERICHT 07091759

Auftragsnr. Auftraggeber: 10-1728

Projektbezeichnung: Grabeland Schwerte - Teilfläche Garagenhof

Probenahme: durch Auftraggeber am 24.08.2017

Probentransport: durch Laboratorien Dr. Döring GmbH am 30.08.2017

Probeneingang: 31.08.2017

Prüfzeitraum: 31.08.2017 – 14.09.2017

Probennummer: 47429 - 47434 / 17

Probenmaterial: Boden

Verpackung: Weißglas (0,5 L)

Bemerkungen: Chromatogramme und Reporte der Bibliotheksmassenspektrensuche

im Anhang

Sonstiges: Der Messfehler dieser Prüfungen befindet sich im üblichen Rahmen. Näheres teilen wir Ihnen auf Anfrage gerne mit.

Die Prüfergebnisse beziehen sich ausschließlich auf die angegebenen Prüfgegenstände. Eine auszugsweise Vervielfältigung dieses Prüfberichts bedarf der schriftlichen Genehmigung durch die Laboratorien Dr. Döring GmbH.

Analysenbefunde: Seite 3 - 9

Messverfahren: Seite 2

Qualitätskontrolle:

Dr. Jens Krause (stellv. Laborleiter)

Dr. Ralf Rohlfing (Laborleiter)

Prüfbericht 07091759.doc

Seite 1 von 9

Probenvorbereitung: DIN 19747

Messverfahren: Trockenmasse DIN EN 14346
TOC DIN EN 13137
Kohlenwasserstoffe (GC;F) DIN EN 14039

Phenol-Index DIN 38409-H16
Cyanide (F) DIN ISO 11262
Cyanide (E) DIN 38405-13
Chlorid DIN EN ISO 10304-1
Sulfat DIN EN ISO 10304-1

Arsen (F; E) DIN EN ISO 11885 (E22); -17294-2
Blei (F; E) DIN EN ISO 11885 (E22); -17294-2
Cadmium (F; E) DIN EN ISO 11885 (E22); -17294-2
Chrom (F; E) DIN EN ISO 11885 (E22); -17294-2
Kupfer (F; E) DIN EN ISO 11885 (E22); -17294-2
Nickel (F; E) DIN EN ISO 11885 (E22); -17294-2

Quecksilber (F; E) DIN EN ISO 12846 (E12) Thallium (F) DIN EN ISO 17294-2

Zink (F; E) DIN EN ISO 11885 (E22); -17294-2

PAK DIN ISO 18287
PCB DIN EN 15308
BTEX DIN 38407-F9

LHKW DIN EN ISO 10301 (F4,HS-GC/MS)

EOX DIN 38414-S17
pH-Wert (W,E) DIN 38404-C5
el. Leitfähigkeit DIN EN 27888 (C8)
Eluat DIN EN 12457-4
Aufschluss DIN EN 13657

GC-Screening GC/MS

Labornummer	47429	47430	47431	47432
Probenbezeichnung	MP 1	MP 2	MP3	MP 4
Entnahmetiefe	0,0-0,4 m	0,0-0,3 m	0,0-0,4 m	0,3-0,9 m
Dimension	[mg/kg TS]	[mg/kg TS]	[mg/kg TS]	[mg/kg TS]
Trockenmasse [%]	87,8	93,5	86,7	89,3
TOC [%]	1,4	1,9	10,6	5,8
Kohlenwasserstoffe, n-C ₁₀₋₂₂	< 5	12	15	23
Kohlenwasserstoffe, n-C ₁₀₋₄₀	35	140	120	370
Cyanid, gesamt	< 0,05	< 0,05	< 0,05	0,48
EOX	0,3	< 0,1	4,4	0,9
	,		,	ŕ
GC/MS-Screening			siehe Seite 9	
Arsen	10	11	13	15
Blei	74	30	140	120
Cadmium	0,7	0,8	0,7	0,5
Chrom	12	14	23	25
Kupfer	100	38	110	470
Nickel	81	38	72	470
Quecksilber	< 0,1	< 0,1	0,2	0,3
Thallium	0,3	0,2	0,4	0,3
Zink	110	77	240	360
PCB 28	< 0,001	< 0,001	< 0,001	< 0,001
PCB 52	< 0,001	< 0,001	< 0,001	0,002
PCB 101	< 0,001	< 0,001	0,001	0,022
PCB 138	0,001	< 0,001	0,002	0,130
PCB 153	0,001	< 0,001	0,002	0,093
PCB 180	0,001	< 0,001	0,002	0,099
Summe PCB (6 Kong.)	0,003	n.n.	0,007	0,346
Naphthalin Naphthalin	0,002	0,010	0,018	0,028
Acenaphthylen	0,001	0,005	0,012	0,005
Acenaphthen	0,002	0,006	0,013	0,009
Fluoren	0,002	0,007	0,015	0,010
Phenanthren	0,028	0,104	0,297	0,190
Anthracen	0,007	0,016	0,034	0,035
Fluoranthen	0,066	0,204	0,537	0,268
Pyren	0,051	0,168	0,372	0,202
Benzo(a)anthracen	0,040	0,122	0,306	0,248
Chrysen	0,037	0,113	0,302	0,243
Benzo(b)fluoranthen	0,059	0,276	0,520	0,364
Benzo(k)fluoranthen	0,019	0,081	0,111	0,081
Benzo(a)pyren	0,035	0,141	0,218	0,136
Indeno(1,2,3-cd)pyren	0,025	0,149	0,213	0,114
Dibenzo(a,h)anthracen	0,005	0,031	0,048	0,026
Benzo(g,h,i)perylen	0,024	0,133	0,169	0,110
Summe PAK (EPA)	0,403	1,566	3,185	2,069
Benzo(g,h,i)perylen	0,024	0,133	0,169	0,110

Prüfbericht 07091759.doc

Seite 3 von 9

Labornummer	47429	47430	47431	47432
Probenbezeichnung	MP 1	MP 2	MP3	MP 4
Entnahmetiefe	0,0-0,4 m	0,0-0,3 m	0,0-0,4 m	0,3-0,9 m
Dimension	[mg/kg TS]	[mg/kg TS]	[mg/kg TS]	[mg/kg TS]
Benzol	< 0,01	< 0,01	< 0,01	0,11
Toluol	< 0,01	0,01	0,01	0,19
Ethylbenzol	< 0,01	< 0,01	0,01	0,01
Xylole	< 0,01	0,03	0,13	0,26
Trimethylbenzole	< 0,01	< 0,01	0,03	0,12
Summe BTEX	n.n.	0,04	0,18	0,69
Vinylchlorid	< 0,01	< 0,01	< 0,01	< 0,01
1,1-Dichlorethen	< 0,01	< 0,01	< 0,01	< 0,01
Dichlormethan	< 0,01	< 0,01	< 0,01	< 0,01
1,2-trans-Dichlorethen	< 0,01	< 0,01	< 0,01	< 0,01
1,1-Dichlorethan	< 0,01	< 0,01	< 0,01	< 0,01
1,2-cis-Dichlorethen	< 0,01	< 0,01	< 0,01	< 0,01
Tetrachlormethan	< 0,01	< 0,01	< 0,01	< 0,01
1,1,1-Trichlorethan	< 0,01	< 0,01	< 0,01	< 0,01
Chloroform	< 0,01	< 0,01	< 0,01	< 0,01
1,2-Dichlorethan	< 0,01	< 0,01	< 0,01	< 0,01
Trichlorethen	0,09	< 0,01	0,05	0,07
Dibrommethan	< 0,01	< 0,01	< 0,01	< 0,01
Bromdichlormethan	< 0,01	< 0,01	< 0,01	< 0,01
Tetrachlorethen	0,07	< 0,01	0,01	0,09
1,1,2-Trichlorethan	< 0,01	< 0,01	< 0,01	< 0,01
Dibromchlormethan	< 0,01	< 0,01	< 0,01	< 0,01
Tribrommethan	< 0,01	< 0,01	< 0,01	< 0,01
Summe LHKW	0,16	n.n.	0,06	0,16

haferwende 12

28357 bremen

fon 05 11 · 26 13 99 64 fax 05 11 · 2 62 67 90

freboldstraße 16

30455 hannover

Labornummer	47429	47430	47431	47432
Probenbezeichnung	MP 1	MP 2	MP 3	MP 4
Entnahmetiefe	0,0-0,4 m	0,0-0,3 m	0,0-0,4 m	0,3-0,9 m
Dimension	ELUAT [μg/L]	ELUAT [μg/L]	ELUAT [μg/L]	ELUAT [μg/L]
pH-Wert bei 20 °C el. Leitfähigkeit [µS/cm] bei 25 °C Phenol-Index Cyanid, gesamt	8,5 86 < 10 < 5	8,1 155 < 10 < 5	8,2 142 < 10 < 5	9,0 86 < 10 < 5
Chlorid Sulfat	990 3.600	1.400 12.000	990 21.000	1.800 5.700
Arsen Blei Cadmium Chrom Kupfer Nickel Quecksilber Zink	< 2,0 < 0,2 < 0,2 < 0,3 3,5 < 1,0 < 0,1 < 2,0	< 2,0 0,3 < 0,2 0,3 5,5 1,8 < 0,1 4,8	< 2,0 0,6 < 0,2 4,2 3,8 1,2 < 0,1 3,4	11 0,4 < 0,2 1,0 17 5,5 < 0,1 2,9

Labornummer				
Entnahmetiefe	Labornummer	47433	47434	
Dimension	Probenbezeichnung	MP 5	MP 6	
Dimension	Entnahmetiefe	0,2-0,7 m	0,4-1,0 m	
TOC % Kohlenwasserstoffe, n-C ₁₀₋₂₂ Kohlenwasserstoffe, n-C ₁₀₋₄₀	Dimension	[mg/kg TS]		
TOC % Kohlenwasserstoffe, n-C ₁₀₋₂₂ Kohlenwasserstoffe, n-C ₁₀₋₄₀	Trockenmasse [%]	91,0	82,9	
Kohlenwasserstoffe, n-C ₁₀₋₂₂ 26		1,7	1.3	
Kohlenwasserstoffe, n-C ₁₀₋₄₀				
Cyanid, gesamt EOX < 0,05 12 0,1		300		
EOX		< 0.05		
Arsen				
Arsen Blei 74 750 Cadmium 0,5 0,6 Chrom 23 22 Kupfer 170 160 Nickel 97 92 Quecksilber - 0,1			0,1	
Blei	GC/MS-Screening	siehe Seite 9		
Blei	Arsen	14	13	
Cadmium 0,5 0,6 Chrom 23 22 Kupfer 170 160 Nickel 97 92 Quecksilber <0,1				
Chrom 23 22 Kupfer 170 160 Nickel 97 92 Quecksilber < 0,1				
Kupfer 170 160 Nickel 97 92 Quecksilber < 0,1				
Nickel 97 92 Quecksilber < 0,1				
Quecksilber Thallium < 0,1 0,2 290 < 0,1 280 Zink 290 280 PCB 28 PCB 52 PCB 101 PCB 138 PCB 138 PCB 153 PCB 180 Summe PCB (6 Kong.) < 0,001 0,002 0,001 0,001 0,003 0,001 0,001 0,003 0,001 0,003 0,001 0,003 0,001 0,003 0,001 0,003 0,001 0,003 0,001 0,003 0,001 0,003 0,001 0,003 0,001 0,003 0,001 0,003 0,001 0,001 0,003 0,001 0,003 0,001 0,001 0,003 0,001 0,002 0,101 0,003 0,004 0,002 0,101 0,003 0,002 0,101 0,003 0,240 0,102 0,008 0,240 0,102 0,086 0,240 0,102 0,103 0,203 0,530 Fluoren 1,02 0,270 0,102 0,103 0,530 Fluoranthen 1,102 0,270 0,103 0,530 Fluoranthen 1,52 4,59 Pyren 1,06 3,16 Benzo(a)anthracen 0,666 2,75 0,666 2,75 0,666 2,75 0,666 2,50 Benzo(b)fluoranthen 1,10 3,25 Benzo(b)fluoranthen 1,10 3,25 Benzo(b)fluoranthen 1,10 3,25 Benzo(b)fluoranthen 1,10 3,25 Benzo(b)fluoranthen 1,10 3,25 Benzo(b)fluoranthen 1,10 3,25 Benzo(a)hjanthracen 0,080 0,291 Benzo(a),hjanthracen 0,080 0,0291 Benzo(g,h,i)perylen 0,080 0,291 0,080 0,0291 0,080 0,0291 0,080 0,0291 0,080 0,0291 0,080 0,0291 0,080 0,0291 0,080 0,0291 0,080 0,0291 0,080 0,0291 0,080 0,0291 0,080 0,0291 0,080 0,0291 0,080 0,0291 0,080 0,0921 0,0921 0,0921 0,0921 0,0921 0,0921 0,0921 0,0921 0,0921 0,0921 0,0921 0,0921 0,0921 0,0921 0,0921				
Thallium 0,2 0,3 Zink 290 280 PCB 28 < 0,001				
Zink 290 280 PCB 28 PCB 52 PCB 101 PCB 138 PCB 138 PCB 153 PCB 180 < 0,001 0,002 0,001 0,004 PCB 153 PCB 180 0,008 0,004 0,011 0,003 0,031 0,004 0,001 0,003 0,011 0,003 Naphthalin Acenaphthylen 0,039 0,012 0,019 0,022 0,101 0,086 0,240 Phenanthren 0,073 0,102 Fluoren 0,102 0,086 0,240 Phenanthren 0,22 0,101 0,086 0,240 Phenanthren 0,123 0,530 Fluoranthen 0,530 Fluoranthen 1,52 0,530 Fluoranthen 4,59 0,666 2,75 0,666 2,75 Chrysen 0,666 2,75 0,660 2,50 Benzo(a)anthracen 0,666 2,75 0,660 2,50 Benzo(b)fluoranthen 1,10 3,25 Benzo(a)pyren 1,92 Indeno(1,2,3-cd)pyren 1,92 Indeno(1,2,3-cd)pyren 1,92 Indeno(1,2,3-cd)pyren 1,92 Benzo(g,h,i)perylen 0,406 1,19 0,080 0,291 Benzo(g,h,i)perylen 0,406 1,19 0,080 0,291 Benzo(g,h,i)perylen				
PCB 28 < 0,001				
PCB 52 < 0,001	ZIIIK	230	200	
PCB 52 < 0,001	PCB 28	< 0.001	< 0.001	
PCB 101 0,002 0,001 PCB 138 0,010 0,004 PCB 153 0,008 0,004 PCB 180 0,011 0,003 Summe PCB (6 Kong.) 0,031 0,012 Naphthalin 0,039 0,019 Acenaphthylen 0,022 0,101 Acenaphthen 0,073 0,102 Fluoren 0,086 0,240 Phenanthren 1,02 2,70 Anthracen 0,123 0,530 Fluoranthen 1,52 4,59 Pyren 1,06 3,16 Benzo(a)anthracen 0,666 2,75 Chrysen 0,660 2,50 Benzo(b)fluoranthen 1,10 3,25 Benzo(k)fluoranthen 0,298 0,993 Benzo(a)pyren 0,589 1,92 Indeno(1,2,3-cd)pyren 0,406 1,19 Dibenzo(a,h)anthracen 0,080 0,291 Benzo(g,h,i)perylen 0,382 1,04			· ·	
PCB 138 0,010 0,004 PCB 153 0,008 0,004 PCB 180 0,011 0,003 Summe PCB (6 Kong.) 0,031 0,012 Naphthalin 0,039 0,019 Acenaphthylen 0,022 0,101 Acenaphthen 0,073 0,102 Fluoren 0,086 0,240 Phenanthren 1,02 2,70 Anthracen 0,123 0,530 Fluoranthen 1,52 4,59 Pyren 1,06 3,16 Benzo(a)anthracen 0,666 2,75 Chrysen 0,660 2,50 Benzo(b)fluoranthen 1,10 3,25 Benzo(k)fluoranthen 0,298 0,993 Benzo(a)pyren 0,589 1,92 Indeno(1,2,3-cd)pyren 0,406 1,19 Dibenzo(a,h)anthracen 0,080 0,291 Benzo(g,h,i)perylen 0,382 1,04			· ·	
PCB 153 0,008 0,004 PCB 180 0,011 0,003 Summe PCB (6 Kong.) 0,031 0,012 Naphthalin 0,039 0,019 Acenaphthylen 0,022 0,101 Acenaphthen 0,073 0,102 Fluoren 0,086 0,240 Phenanthren 1,02 2,70 Anthracen 0,123 0,530 Fluoranthen 1,52 4,59 Pyren 1,06 3,16 Benzo(a)anthracen 0,666 2,75 Chrysen 0,660 2,50 Benzo(b)fluoranthen 1,10 3,25 Benzo(k)fluoranthen 0,298 0,993 Benzo(a)pyren 0,589 1,92 Indeno(1,2,3-cd)pyren 0,406 1,19 Dibenzo(a,h)anthracen 0,080 0,291 Benzo(g,h,i)perylen 0,382 1,04		·	•	
PCB 180 0,011 0,003 Summe PCB (6 Kong.) 0,031 0,012 Naphthalin 0,039 0,019 Acenaphthylen 0,022 0,101 Acenaphthen 0,073 0,102 Fluoren 0,086 0,240 Phenanthren 1,02 2,70 Anthracen 0,123 0,530 Fluoranthen 1,52 4,59 Pyren 1,06 3,16 Benzo(a)anthracen 0,666 2,75 Chrysen 0,660 2,50 Benzo(b)fluoranthen 1,10 3,25 Benzo(k)fluoranthen 0,298 0,993 Benzo(a)pyren 0,589 1,92 Indeno(1,2,3-cd)pyren 0,406 1,19 Dibenzo(a,h)anthracen 0,080 0,291 Benzo(g,h,i)perylen 0,382 1,04		·	•	
Summe PCB (6 Kong.) 0,031 0,012 Naphthalin 0,039 0,019 Acenaphthylen 0,022 0,101 Acenaphthen 0,073 0,102 Fluoren 0,086 0,240 Phenanthren 1,02 2,70 Anthracen 0,123 0,530 Fluoranthen 1,52 4,59 Pyren 1,06 3,16 Benzo(a)anthracen 0,666 2,75 Chrysen 0,660 2,50 Benzo(b)fluoranthen 1,10 3,25 Benzo(a)pyren 0,589 1,92 Indeno(1,2,3-cd)pyren 0,406 1,19 Dibenzo(a,h)anthracen 0,080 0,291 Benzo(g,h,i)perylen 0,382 1,04		-		
Naphthalin 0,039 0,019 Acenaphthylen 0,022 0,101 Acenaphthen 0,073 0,102 Fluoren 0,086 0,240 Phenanthren 1,02 2,70 Anthracen 0,123 0,530 Fluoranthen 1,52 4,59 Pyren 1,06 3,16 Benzo(a)anthracen 0,666 2,75 Chrysen 0,660 2,50 Benzo(b)fluoranthen 1,10 3,25 Benzo(a)pyren 0,589 1,92 Indeno(1,2,3-cd)pyren 0,406 1,19 Dibenzo(a,h)anthracen 0,080 0,291 Benzo(g,h,i)perylen 0,382 1,04				
Acenaphthylen 0,022 0,101 Acenaphthen 0,073 0,102 Fluoren 0,086 0,240 Phenanthren 1,02 2,70 Anthracen 0,123 0,530 Fluoranthen 1,52 4,59 Pyren 1,06 3,16 Benzo(a)anthracen 0,666 2,75 Chrysen 0,660 2,50 Benzo(b)fluoranthen 1,10 3,25 Benzo(k)fluoranthen 0,298 0,993 Benzo(a)pyren 0,589 1,92 Indeno(1,2,3-cd)pyren 0,406 1,19 Dibenzo(a,h)anthracen 0,080 0,291 Benzo(g,h,i)perylen 0,382 1,04	Cultille 1 OD (6 Itolig.)	0,001	0,012	
Acenaphthylen 0,022 0,101 Acenaphthen 0,073 0,102 Fluoren 0,086 0,240 Phenanthren 1,02 2,70 Anthracen 0,123 0,530 Fluoranthen 1,52 4,59 Pyren 1,06 3,16 Benzo(a)anthracen 0,666 2,75 Chrysen 0,660 2,50 Benzo(b)fluoranthen 1,10 3,25 Benzo(k)fluoranthen 0,298 0,993 Benzo(a)pyren 0,589 1,92 Indeno(1,2,3-cd)pyren 0,406 1,19 Dibenzo(a,h)anthracen 0,080 0,291 Benzo(g,h,i)perylen 0,382 1,04	Naphthalin	0,039	0,019	
Acenaphthen 0,073 0,102 Fluoren 0,086 0,240 Phenanthren 1,02 2,70 Anthracen 0,123 0,530 Fluoranthen 1,52 4,59 Pyren 1,06 3,16 Benzo(a)anthracen 0,666 2,75 Chrysen 0,660 2,50 Benzo(b)fluoranthen 1,10 3,25 Benzo(k)fluoranthen 0,298 0,993 Benzo(a)pyren 0,589 1,92 Indeno(1,2,3-cd)pyren 0,406 1,19 Dibenzo(a,h)anthracen 0,080 0,291 Benzo(g,h,i)perylen 0,382 1,04		·		
Fluoren 0,086 0,240 Phenanthren 1,02 2,70 Anthracen 0,123 0,530 Fluoranthen 1,52 4,59 Pyren 1,06 3,16 Benzo(a)anthracen 0,666 2,75 Chrysen 0,660 2,50 Benzo(b)fluoranthen 1,10 3,25 Benzo(k)fluoranthen 0,298 0,993 Benzo(a)pyren 0,589 1,92 Indeno(1,2,3-cd)pyren 0,406 1,19 Dibenzo(a,h)anthracen 0,080 0,291 Benzo(g,h,i)perylen 0,382 1,04		-		
Phenanthren 1,02 2,70 Anthracen 0,123 0,530 Fluoranthen 1,52 4,59 Pyren 1,06 3,16 Benzo(a)anthracen 0,666 2,75 Chrysen 0,660 2,50 Benzo(b)fluoranthen 1,10 3,25 Benzo(k)fluoranthen 0,298 0,993 Benzo(a)pyren 0,589 1,92 Indeno(1,2,3-cd)pyren 0,406 1,19 Dibenzo(a,h)anthracen 0,080 0,291 Benzo(g,h,i)perylen 0,382 1,04		-		
Anthracen 0,123 0,530 Fluoranthen 1,52 4,59 Pyren 1,06 3,16 Benzo(a)anthracen 0,666 2,75 Chrysen 0,660 2,50 Benzo(b)fluoranthen 1,10 3,25 Benzo(k)fluoranthen 0,298 0,993 Benzo(a)pyren 0,589 1,92 Indeno(1,2,3-cd)pyren 0,406 1,19 Dibenzo(a,h)anthracen 0,080 0,291 Benzo(g,h,i)perylen 0,382 1,04				
Fluoranthen 1,52 4,59 Pyren 1,06 3,16 Benzo(a)anthracen 0,666 2,75 Chrysen 0,660 2,50 Benzo(b)fluoranthen 1,10 3,25 Benzo(k)fluoranthen 0,298 0,993 Benzo(a)pyren 0,589 1,92 Indeno(1,2,3-cd)pyren 0,406 1,19 Dibenzo(a,h)anthracen 0,080 0,291 Benzo(g,h,i)perylen 0,382 1,04				
Pyren 1,06 3,16 Benzo(a)anthracen 0,666 2,75 Chrysen 0,660 2,50 Benzo(b)fluoranthen 1,10 3,25 Benzo(k)fluoranthen 0,298 0,993 Benzo(a)pyren 0,589 1,92 Indeno(1,2,3-cd)pyren 0,406 1,19 Dibenzo(a,h)anthracen 0,080 0,291 Benzo(g,h,i)perylen 0,382 1,04				
Benzo(a)anthracen 0,666 2,75 Chrysen 0,660 2,50 Benzo(b)fluoranthen 1,10 3,25 Benzo(k)fluoranthen 0,298 0,993 Benzo(a)pyren 0,589 1,92 Indeno(1,2,3-cd)pyren 0,406 1,19 Dibenzo(a,h)anthracen 0,080 0,291 Benzo(g,h,i)perylen 0,382 1,04				
Chrysen 0,660 2,50 Benzo(b)fluoranthen 1,10 3,25 Benzo(k)fluoranthen 0,298 0,993 Benzo(a)pyren 0,589 1,92 Indeno(1,2,3-cd)pyren 0,406 1,19 Dibenzo(a,h)anthracen 0,080 0,291 Benzo(g,h,i)perylen 0,382 1,04				
Benzo(b)fluoranthen 1,10 3,25 Benzo(k)fluoranthen 0,298 0,993 Benzo(a)pyren 0,589 1,92 Indeno(1,2,3-cd)pyren 0,406 1,19 Dibenzo(a,h)anthracen 0,080 0,291 Benzo(g,h,i)perylen 0,382 1,04				
Benzo(k)fluoranthen 0,298 0,993 Benzo(a)pyren 0,589 1,92 Indeno(1,2,3-cd)pyren 0,406 1,19 Dibenzo(a,h)anthracen 0,080 0,291 Benzo(g,h,i)perylen 0,382 1,04		,		
Benzo(a)pyren 0,589 1,92 Indeno(1,2,3-cd)pyren 0,406 1,19 Dibenzo(a,h)anthracen 0,080 0,291 Benzo(g,h,i)perylen 0,382 1,04				
Indeno(1,2,3-cd)pyren 0,406 1,19 Dibenzo(a,h)anthracen 0,080 0,291 Benzo(g,h,i)perylen 0,382 1,04				
Dibenzo(a,h)anthracen 0,080 0,291 Benzo(g,h,i)perylen 0,382 1,04				
Benzo(g,h,i)perylen 0,382 1,04				
, e ,		·	•	
	, ,	<u> </u>	, 	

Labornummer	47433	47434	
Probenbezeichnung	MP 5	MP 6	
Entnahmetiefe	0,2-0,7 m	0,4-1,0 m	
Dimension	[mg/kg TS]	[mg/kg TS]	
Benzol	< 0,01	< 0,01	
Toluol	< 0,01	< 0,01	
Ethylbenzol	< 0,01	< 0,01	
Xylole	< 0,01	< 0,01	
Trimethylbenzole	< 0,01	< 0,01	
Summe BTEX	n.n.	n.n.	
Vinylchlorid	< 0,01	< 0,01	
1,1-Dichlorethen	< 0,01	< 0,01	
Dichlormethan	< 0,01	< 0,01	
1,2-trans-Dichlorethen	< 0,01	< 0,01	
1,1-Dichlorethan	< 0,01	< 0,01	
1,2-cis-Dichlorethen	< 0,01	< 0,01	
Tetrachlormethan	< 0,01	< 0,01	
1,1,1-Trichlorethan	< 0,01	< 0,01	
Chloroform	< 0,01	< 0,01	
1,2-Dichlorethan	< 0,01	< 0,01	
Trichlorethen	< 0,01	< 0,01	
Dibrommethan	< 0,01	< 0,01	
Bromdichlormethan	< 0,01	< 0,01	
Tetrachlorethen	< 0,01	< 0,01	
1,1,2-Trichlorethan	< 0,01	< 0,01	
Dibromchlormethan	< 0,01	< 0,01	
Tribrommethan	< 0,01	< 0,01	
Summe LHKW	n.n.	n.n.	

Labornummer	47433	47434	
Probenbezeichnung	MP 5	MP 6	
Entnahmetiefe	0,2-0,7 m	0,4-1,0 m	
Dimension	ELUAT [μg/L]	ELUAT [μg/L]	
pH-Wert bei 20 °C el. Leitfähigkeit [μS/cm] bei 25 °C Phenol-Index Cyanid, gesamt	8,8 104 < 10 < 5	7,6 88 < 10 < 5	
Chlorid Sulfat	1.500 12.000	990 11.000	
Arsen Blei Cadmium Chrom Kupfer Nickel Quecksilber Zink	5,1 1,6 < 0,2 1,9 18 6,1 < 0,1 9,8	2,4 2,1 < 0,2 < 0,3 8,0 2,2 < 0,1 2,0	

GC/MS-Screening

Extraktion und Messung:

Zur Bestimmung der mittel- und schwerflüchtigen Komponenten wurden die Proben mit einem

n-Heptan / Aceton - Gemisch extrahiert. Die Extrakte wurden mittels wasserfreiem Natriumsulfat

getrocknet und anschließend unverdünnt durch GC/MS analysiert (Agilent Gaschromatograph GC

6890 und Massenspektrometer MSD 5973).

Ergebnis:

Die Identifizierung der Verbindungen (vgl. Chromatogramm im Anhang) erfolgte anhand der Reten-

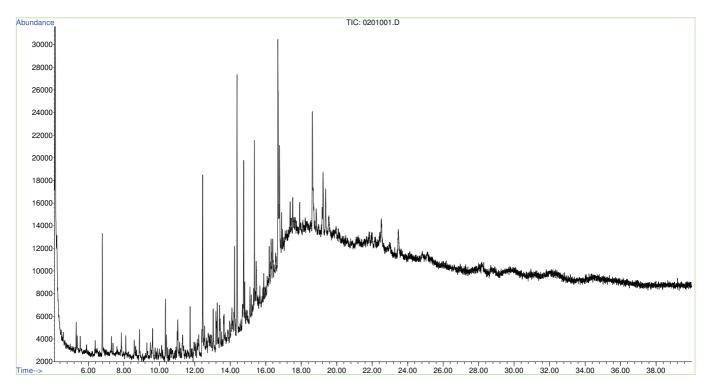
tionszeiten und der Resultate der Bibliotheksmassenspektrensuche (NBS-, Wiley- und Nist-Library).

In den Extrakten der Proben MP 3 (47431) und MP 5 (47433) wurden eine Vielzahl an n-, iso- und

cyclo-Alkanen identifiziert, sowie auch Ester organischer Säuren. Es wurden keine halogenierten

Verbindungen nachgewiesen.

Alle identifizierten Verbindungen sind im Anhang aufgelistet.


fon 05 11 · 26 13 99 64

fax 05 11 · 2 62 67 90

:Y:\ACER-MSD\1\2017\ASD_170908\0201001.D

File :Y:\ACER-MSD\1\2017\A
Operator :
Acquired : 8 Sep 2017 12:41
Instrument : ASD
Sample Name: 47431 - MP 3
Misc Info :
Vial Number: 2

using AcqMethod RR_H53.M

Library Search Report

Data Path : Y:\ACER-MSD\1\2017\ASD_170908\

Data File : 0201001.D

Acq On : 8 Sep 2017 12:41

Operator :

Sample : 47431 - MP 3

Misc

ALS Vial : 2 Sample Multiplier: 1

Search Libraries: C:\Database\NBS75K.L Minimum Quality: 90 C:\Database\WILEY.L Minimum Quality: 90 C:\Database\Wiley_Nist.L

Unknown Spectrum: Apex minus start of peak

Integration Events: Chemstation Integrator - scan.e

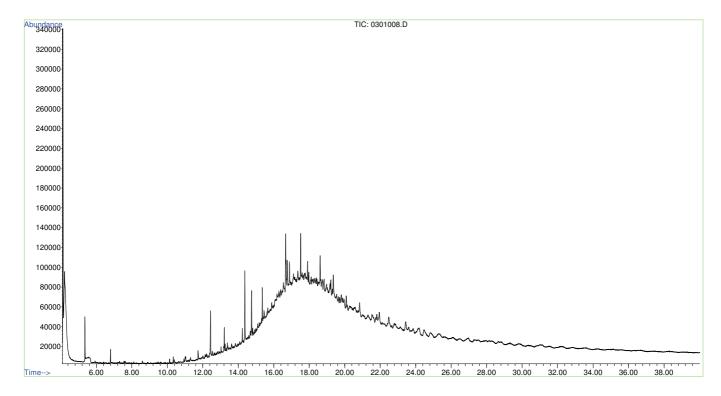
Pk#	RT	Area%	Library/ID	Ref#	CAS# Qı	ıal
1	4.13	3.52	C:\Database\WILEY.L o-Xylene-d10	2715	ISTD 000000-00-0	91
2	5.32	0.46	C:\Database\NBS75K.L Decane Decane Pentadecane	66207	BW 000124-18-5 000124-18-5 000629-62-9	83
3	6.79	1.96	<pre>C:\Database\NBS75K.L 1,1'-Biphenyl, 2,2',3,3',4,4',5,5' ,6,6'-decafluoro- Cobalt, .mu[bis(pentafluoropheny</pre>		ISTD 000434-90-2 031122-34-6	
			1) disulfide-S,S':S,S']]hexacarbon yldi-, (Co-Co) Acetic acid, trifluoro-, 1-methyl- 2-(1,2,3,6-tetrahydro-1,3-dimethyl -2,6-dioxo-7H-purin-7-yl)ethyl est er			
4	7.30	0.33	C:\Database\Wiley_Nist.L Dodecane Dodecane (CAS); n-Dodecane; Ba 51- 090453; Adakane 12; Isododecane; C H3(CH2)10CH3; Bihexyl; Dihexyl; n- Dodecane min; N-Dodecan; Duodecane ; ACETIC ACID 3-HYDROXY-7-ISOPROPE NYL-1,4A-DIMETHYL-2,3,4,4A,5,6,7,8 -OCTAHYDRO-NAP		000112-40-3 000112-40-3	
F	7.06	0.45	Dodecane	382614	000112-40-3	64
5			C:\Database\Wiley_Nist.L			
6	8.11	0.40	C:\Database\NBS75K.L Tridecane Tridecane Tridecane	18989	000629-50-5 000629-50-5 000629-50-5	90
7	8.88	0.44	<pre>C:\Database\Wiley_Nist.L Tetradecane Tetradecane (CAS); n-Tetradecane; Isotetradecane Tetradecane (CAS); n-Tetradecane; Isotetradecane</pre>	398655	000629-59-4 000629-59-4 000629-59-4	87

8	9.62	0.71	C:\Database\NBS75K.L Pentadecane Pentadecane Pentadecane	70277	000629-62-9 000629-62-9 000629-62-9	94
9	10.34	1.07	C:\Database\NBS75K.L Hexadecane Hexadecane Hexadecane	70790	000544-76-3 000544-76-3 000544-76-3	93
10	10.40	0.74	C:\Database\Wiley_Nist.L Dibenzofuran (CAS); Dibenzo[b,d]fu ran; Diphenylene oxide; 2,2'-Biphe nylene oxide; 2,2'-Biphenylylene o xide; [1,1'-Biphenyl]-2,2'-diyl ox ide; DIBENZO(BD)FURAN (DIPHENYLENE OXIDE)	381312	000132-64-9	53
			Dibenzofuran (CAS); Dibenzo[b,d]fu ran; Diphenylene oxide; 2,2'-Biphe nylene oxide; 2,2'-Biphenylylene o xide; [1,1'-Biphenyl]-2,2'-diyl oxide; DIBENZO(BD)FURAN (DIPHENYLENE OXIDE)	381311	000132-64-9	50
			Dibenzofuran (CAS); Dibenzo[b,d]fu ran; Diphenylene oxide; 2,2'-Biphe nylene oxide; 2,2'-Biphenylylene o xide; [1,1'-Biphenyl]-2,2'-diyl oxide	381307	000132-64-9	50
11	11.01	0.59	<pre>C:\Database\Wiley_Nist.L</pre>			
12	11.04	1.10	<pre>C:\Database\Wiley_Nist.L Pentadecane, 2-methyl Heneicosane (CAS); n-Heneicosane; Henicosane #; Henicosane (computer -generated name)</pre>	434742		64
			Triacontane	454155	000638-68-6	64
13			C:\Database\Wiley_Nist.L			
14	11.74	0.88	C:\Database\WILEY.L Octadecane Tricosane Tetratriacontane	80067	000593-45-3 000638-67-5 014167-59-0	72
15	12.40	0.48	C:\Database\NBS75K.L Nonadecane Tetradecane Nonadecane	69660	000629-92-5 000629-59-4 000629-92-5	87
16	12.45	3.99	C:\Database\NBS75K.L Phenanthrene Phenanthrene Anthracene	68640	000085-01-8 000085-01-8 000120-12-7	93
17	12.55	1.20	<pre>C:\Database\Wiley_Nist.L Anthracene</pre>	68645	000120-12-7	70
18	12.76	0.84	C:\Database\Wiley_Nist.L			
19	13.04	0.84	C:\Database\NBS75K.L			

			Eicosane Eicosane Tetradecane	39862	000112-95-8 000112-95-8 000629-59-4	91
20	13.20	0.67	C:\Database\WILEY.L METHYL-PHENANTHRENE OR METHYL-ANTH RACENE	31355	000000-00-0	90
			Phenanthrene, 3-methyl- Anthracene, 2-methyl-		000832-71-3 000613-12-7	
21	13.22	0.42	C:\Database\Wiley_Nist.L			
22	13.27	1.00	C:\Database\Wiley_Nist.L Phenanthrene, 2-methyl- Phenanthrene, 3-methyl- (CAS); 3-M ethylphenanthrene; 3-Methyl-phenan threne Anthracene, 1-methyl-; 1-Methylant	394970		83
			hracene			
23	13.40	0.80	<pre>C:\Database\Wiley_Nist.L METHYL-PHENANTHRENE OR METHYL-ANTH RACENE; Anthracene, 1-methyl-; 1-M ethylanthracene</pre>	394941	000610-48-0	50
			Phenanthrene, 2-methyl- Phenanthrene, 4-methyl-		002531-84-2 000832-64-4	
24	13.43	0.58	<pre>C:\Database\Wiley_Nist.L</pre>			
25	13.63	0.49	<pre>C:\Database\Wiley_Nist.L 2-Phenylnaphthalene Naphthalene, 2-phenyl- 5,16[1',2']:8,13[1'',2'']-Dibenzen odibenzo[a,g]cyclododecene, 6,7,14 ,15-tetrahydro-</pre>	401811	035465-71-5 000612-94-2 005672-97-9	70
26	13.65	0.57	<pre>C:\Database\Wiley_Nist.L Heneicosan pentadecane Pentadecane (CAS); n-Pentadecane; CH3(CH2)13CH3</pre>		000629-62-9 000629-62-9	
27	13.97	0.41	C:\Database\Wiley_Nist.L Phenanthrene, 2,7-dimethyl- 1,3-Butadiene, 1,4-diphenyl-, (E,E)-; trans,trans-1,4-Diphenyl-1,3-b utadiene; (E,E)-(C6H5CH=CH)2; (E,E)-1,4-Diphenyl-1,3-butadiene; tran s,trans-1,4-Diphenylbutadiene; Ben zene, 1,1'-(1,3-butadiene-1,4-diyl)bis-, (E,E)-; 1,3-Butadiene, 1,4-		001576-69-8 000538-81-8	
			diphenyl-, trans, TRANS-TRANS-1,4-DIPHENYL-1,3-BUTAD IENE; 1,3-Butadiene, 1,4-diphenyl- , trans,trans-; (trans),(trans)-1, 4-diphenyl-1,3-butadiene; 1,3-Buta diene, 1,4-diphenyl-, (E,E)-; (E,E)-(C6H5CH=CH2)2; (E,E)-1,4-Dipheny l-1,3-butadiene; trans,trans-1,4-D iphenyl-1,3-butad	402706	000538-81-8	64
0.0	1 1 1 1 1	1 00	C. \ D. + - l \ LITI DV T			

			Anthracene, 9,10-dimethyl- 1,4-DIMETHYL-ANTHRACENE Phenanthrene, 2,5-dimethyl-	37758	000781-43-1 000000-00-0 003674-66-6	91
29	14.21	0.57	<pre>C:\Database\Wiley_Nist.L Anthracene, 1,4-dimethyl-; 1,4-Dim</pre>	71848	000781-92-0	76
			ethylanthracene # 1,4-DIMETHYL-ANTHRACENE 9,10-Dimethylanthracene		000000-00-0 000781-43-1	
30	14.24	1.60	C:\Database\Wiley_Nist.L Hexadecanoic acid, butyl ester; Pa lmitic acid, butyl ester; n-Butyl hexadecanoate; n-Butyl palmitate; Butyl palmitate; Butyl ester of he xadecanoic acid	438635	000111-06-8	68
			Heptadecane; n-Heptadecane; Normal -heptadecane	417586	000629-78-7	44
			Hexadecane Hexadecanoic acid, butyl ester (CA S); n-Butyl palmitate; Butyl palmi tate; n-Butyl hexadecanoate; Palmi tic acid, butyl ester; Butyl ester of hexadecanoic acid; Butyl hexad ecanoate	438637	000111-06-8	38
31	14.38	5.46	C:\Database\NBS75K.L			
			Fluoranthene Pyrene Pyrene	23469	000206-44-0 000129-00-0 000129-00-0	93
32	14.69	0.67	C:\Database\NBS75K.L Benzo[b]naphtho[2,3-d]furan Benzo[b]naphtho[2,3-d]furan 1,4-Methanonaphthalene, 1,4-dihydr o-9-phenyl-	27270	000243-42-5 000243-42-5 055028-73-4	87
33	14.73	0.36	<pre>C:\Database\Wiley_Nist.L</pre>			
34	14.76	3.34	C:\Database\NBS75K.L Pyrene Fluoranthene Pyrene	69815	000129-00-0 000206-44-0 000129-00-0	87
35	14.82	1.02	<pre>C:\Database\Wiley_Nist.L</pre>			
36	15.11	0.95	C:\Database\NBS75K.L 11H-Benzo[b]fluorene Pyrene, 1-methyl- 11H-Benzo[b]fluorene	26847	000243-17-4 002381-21-7 000243-17-4	81
37	15.19	0.55	C:\Database\Wiley_Nist.L			
38	15.32	0.75	<pre>C:\Database\Wiley_Nist.L Pyrene, 1-methyl-; 1-Methylpyrene; 3-Methylpyrene 11H-benzo[a]fluorene (CAS); 1,2-Be nzofluorene; Chrysofluorene; Benzo [a]fluorene; .alphaNaphthofluore</pre>			
			ne; 1,2-BENZOFLUOREN; 11H-Benzo[a] fluorene #; 11H-Benzo[a] fluorene (computer-generated name) 11H-benzo[a] fluorene (CAS); 1,2-Be	407375	000238-84-6	64

fluorene #; 11H-Benzo[a]fluorene (computer-generated name) 39 15.36 2.82 C:\Database\Wiley_Nist.L Octadecanoic acid, butyl ester (CA 444171 000123-95-5 90 S); Butyl stearate; Butyl octadeca noate; Apex 4; Kessco BSC; Groco 5 810; Emerest 2325; Witcizer 201; W itcizer 200; Wickenol 122; Polyciz er 332; Kesscoflex BS; Starfol BS-100; n-Butyl stearate; RC Plastici zer B-17; n-Butyl Octadecanoic acid, butyl ester; St 444170 000123-95-5 89 earic acid, butyl ester; n-Butyl o ctadecanoate; n-Butyl stearate; Ap ex 4; Butyl octadecanoate; Butyl s tearate; Emerest 2325; Groco 5810; Kessco BSC; Kesscoflex BS; Polyci zer 332; RC Plasticizer B-17; Star fol BS-100; Teges n-Butyl myristate 431474 000110-36-1 78 40 15.42 0.76 C:\Database\Wiley_Nist.L 414482 024463-15-8 43 1-Pyrenemethanol 2,2'-Difluoro-6,6-bis(hydroxymethy 126721 111398-16-4 43 1) biphenyl; [1,1'-Biphenyl]-2,2'-d imethanol, 6,6'-difluoro- (CAS) Azulene, 4,8-dimethyl-6-phenyl-; 4 104391 042758-88-3 38 ,8-Dimethyl-6-phenylazulene # 41 15.46 1.85 C:\Database\Wiley_Nist.L 42 15.67 0.84 C:\Database\Wiley_Nist.L Pyrene, 1-methyl- (CAS); 1-Methylp 407389 002381-21-7 52 yrene; 3-Methylpyrene 11H-Benzo[a]fluorene; Benzo[a]fluo 407371 000238-84-6 52 rene; Chrysofluorene; 1,2-Benzoflu orene; 11H-Benzo[a]fluorene # 11H-benzo[a]fluorene (CAS); 1,2-Be 407372 000238-84-6 52 nzofluorene; Chrysofluorene; Benzo [a]fluorene; .alpha.-Naphthofluore ne; 1,2-BENZOFLUOREN; 11H-Benzo[a] fluorene #; 11H-Benzo[a]fluorene (computer-generated name) 43 15.89 0.71 C:\Database\Wiley_Nist.L Docosane (CAS); n-Docosane; C22H46 438159 000629-97-0 46 STANDARD; Normal-docosane 44 16.08 1.10 C:\Database\Wiley_Nist.L 45 16.19 1.30 C:\Database\Wiley_Nist.L 7H-Benz[de]anthracen-7-one (CAS); 413810 000082-05-3 93 Benzanthrone; BENZANTHONE; Benzant hrenone; Naphthanthrone; 7-Oxobenz [de]anthracene; 7H-Benz[de]anthrac ene-7-one; 1,9-Benz-10-anthrone; D ye, benzanthrone; Ms-Benzanthrone;


7H-Benzo (de) anthracen-7-one; Benz

nzofluorene; Chrysofluorene; Benzo
[a]fluorene; .alpha.-Naphthofluore
ne; 1,2-BENZOFLUOREN; 11H-Benzo[a]

			oanthrone; 7H-Ben 7H-Benz[de]anthracen-7-one 7H-Benz[de]anthracen-7-one		000082-05-3 000082-05-3	
46	16.28	0.87	<pre>C:\Database\Wiley_Nist.L 1,2-Benzenedicarboxylic acid, dicy alabamal actor</pre>	442273	000084-61-7	47
			clohexyl ester 4-Pyridinecarboxaldehyde, 3-hydrox y-5-(hydroxymethyl)-2-methyl- (CAS); Pyridoxal; Pyridoxaldehyde; 4-P yridinecarboxaldehyde,; Pyridoxal hydrochloride; 3-Hydroxy-5-(hydrox ymethyl)-2-methylisonicotinaldehyd e #; 3-Hydroxy-5-(hydroxymethyl)-2 -methylisonicotin	380235	000066-72-8	47
			1,2-Benzenedicarboxylic acid, dicy clohexyl ester (CAS); Dicyclohexyl phthalate; KP 201; HF 191; Unimol 1 66; Ergoplast FDC; Phthalic acid, dicyclohexyl ester; Howflex CP; Ergoplast.fdc; DCHP; Dicyclohexyl benzene-1,2-dicarboxylate; Morflex 150; Unimoll 66	442275	000084-61-7	47
47	16.30	2.08	C:\Database\NBS75K.L Benzo[b]naphtho[2,1-d]thiophene Benzo[b]naphtho[2,1-d]thiophene Benzo[b]naphtho[2,3-d]thiophene	30756	000239-35-0 000239-35-0 000243-46-9	91
48	16.40	2.40	C:\Database\Wiley_Nist.L			
			Hexacosan Hexadecane (CAS); n-Hexadecane; Ce tane; n-Cetane; Isohexadecane; HEX ADECAN	412217	000544-76-3	70 68
			Nonadecane (CAS); n-Nonadecane	426694	000629-92-5	47
49	16.56	1.12	<pre>C:\Database\Wiley_Nist.L</pre>			
50	16.68	9.41	C:\Database\NBS75K.L		BW	
51	16.74	1.42	<pre>C:\Database\Wiley_Nist.L</pre>			
52	16.78	4.32	C:\Database\NBS75K.L Triphenylene Chrysene Chrysene	70850	000217-59-4 000218-01-9 000218-01-9	87
53	16.89	2.52	<pre>C:\Database\Wiley_Nist.L Octacosan Nonadecane (CAS); n-Nonadecane Nonadecane</pre>		000629-92-5 000629-92-5	
54	16.94	1.26	C:\Database\Wiley_Nist.L			
55	17.38	2.81	C:\Database\Wiley_Nist.L Benzo[c]phenanthrene, 6-methyl- (C AS); 6-METHYLBENZO(C)PHENANTHRENE; 6-Methyl-3,4-benzophenanthrene; 1 -Methyl-3,4-benzphenanthrene; 6-Methylbenzo[c]phenanthrene #; 6-Methylbenzo[c]phenanthrene (computer-g enerated name)	418368	002381-34-2	38

			Benzo[c]phenanthrene, 5-methyl-; 2 -Methyl-3,4-benzphenanthrene; 5-Me thylbenzo[c]phenanthrene	117524	000652-04-0	38
			Benzo[c]phenanthrene, 6-methyl-; 1 -Methyl-3,4-benzphenanthrene; 6-Me thylbenzo[c]phenanthrene #	418369	002381-34-2	38
56	17.53	3.38	C:\Database\Wiley_Nist.L			
57	17.91	2.19	<pre>C:\Database\Wiley_Nist.L Triacontan Docosane (CAS); n-Docosane; C22H46</pre>	438154	000629-97-0	68 64
			STANDARD; Normal-docosane Docosane	438156	000629-97-0	64
58	18.63	4.38	<pre>C:\Database\NBS75K.L Benzo[a]pyrene Benzo[k]fluoranthene Benzo[e]pyrene</pre>	34434	000050-32-8 000207-08-9 000192-97-2	93
59	18.67	1.56	C:\Database\Wiley_Nist.L			
60	18.84	1.48	C:\Database\Wiley_Nist.L			
61	19.18	0.90	C:\Database\Wiley_Nist.L			
62	19.23	2.10	C:\Database\NBS75K.L Benzo[e]pyrene Benz[e]acephenanthrylene Perylene	34432	000192-97-2 000205-99-2 000198-55-0	76
63	19.38	1.57	<pre>C:\Database\NBS75K.L Benzo[j]fluoranthene Benzo[a]pyrene Benzo[e]pyrene</pre>	71508	000205-82-3 000050-32-8 000192-97-2	93
64	22.52		C:\Database\NBS75K.L Dibenzo[def,mno]chrysene Dibenzo[def,mno]chrysene Indeno[1,2,3-cd]pyrene	72174	000191-26-4 000191-26-4 000193-39-5	76
65	23.48	1.23	<pre>C:\Database\Wiley_Nist.L Benzo[ghi]perylene; Benzo-1,12-per ylene; 1,12-Benzoperylene; 1,12-Be nzperylene</pre>	429247	000191-24-2	89
			Benzo[ghi]perylene (CAS); 1,12-Ben zoperylene; Benzo-1,12-perylene; 1 ,12-Benzperylene; 1,2-BENZOPERYLEN E; benzo [ghi] perylene	429251	000191-24-2	89
			Indeno[1,2,3-cd]fluoranthene	429259	000193-43-1	89

File :Y:\ACER-MSD\1\2017\A
Operator :
Acquired : 8 Sep 2017 16:10
Instrument : ASD
Sample Name: 47433 - MP 5
Misc Info :
Vial Number: 3 :Y:\ACER-MSD\1\2017\ASD_170908\0301008.D

using AcqMethod RR_H53.M

Library Search Report

Data Path : Y:\ACER-MSD\1\2017\ASD_170908\

Data File : 0301008.D

Acq On : 8 Sep 2017 16:10

Operator :

sample : 47433 - MP 5

Misc

ALS Vial : 3 Sample Multiplier: 1

Search Libraries: C:\Database\NBS75K.L
C:\Database\WILEY.L
C:\Database\Wiley_Nist.L Minimum Quality: 90 Minimum Quality: 90

Unknown Spectrum: Apex minus start of peak

Integration Events: Chemstation Integrator - scan.e

						_
Pk#	RT	Area%	Library/ID	Ref#	CAS# Q1	ual
1	4.12	12.32	C:\Database\NBS75K.L	_		
			Nonane		000111-84-2	
			Nonane		000111-84-2	
			Nonane	5163	000111-84-2	95
2	4.21	18.98	C:\Database\Wiley_Nist.L		ISTD	
			o-Xylene-d10	2715	000000-00-0	91
3	5.36	1.23	C:\Database\NBS75K.L			
			Decane	66207	000124-18-5	96
			Decane	66208	000124-18-5	95
			Decane	66204	000124-18-5	95
4	6.80	0.36	C:\Database\NBS75K.L		ISTD	
_			1,1'-Biphenyl, 2,2',3,3',4,4',5,5'	73463		98
			,6,6'-decafluoro-			
5	11.73	0.40	C:\Database\NBS75K.L			
Ü	11.70	0.10	Octadecane	71561	000593-45-3	93
			Pentadecane, 8-hexyl-		013475-75-7	
			Pentatriacontane		000630-07-9	
6	12 43	1 62	C:\Database\NBS75K.L			
O	12.45	1.02	Phenanthrene	68642	000085-01-8	93
			Phenanthrene		000085-01-8	
			Phenanthrene		000085-01-8	
7	13.03	0.17	C:\Database\NBS75K.L			
			Eicosane		000112-95-8	
			Heptadecane		000629-78-7	
			Heptadecane	/1191	000629-78-7	92
8	13.19	0.20	<pre>C:\Database\Wiley_Nist.L</pre>			
			Phenanthrene, 2-methyl-		002531-84-2	
			Phenanthrene, 1-methyl-; 1-Methylp henanthrene; 1-Methyl-phenanthrene	394960	000832-69-9	90
			Phenanthrene, 2-methyl-	394964	002531-84-2	90
9	13.22	0.68	C:\Database\Wiley_Nist.L			
,		O • O O	Isopropyl Palmitate; Hexadecanoic	435229	000142-91-6	86
			acid, 1-methylethyl ester; Palmiti			
			c acid, isopropyl ester; Crodamol			
			IPP; Deltyl; Deltyl Prime; Emcol-I			
			_			

			P; Emerest 2316; Hexadecanoic acid, isopropyl ester; Isopal; Isopalm; Kessco IPP; Propal; Sinnoester P IT; Stepan D-70; Hexadecanoic acid (CAS); Palmitic acid; Palmitinic acid; n-Hexadecoic acid; n-Hexadecanoic acid; Penta decanecarboxylic acid; 1-Pentadecanecarboxylic acid; Prifrac 2960; Coconut oil fatty acids; Cetylic acid; Emersol 140; Emersol 143; Hexadecylic acid; Hyd Octadecanoic acid (CAS); Stearic acid; n-Octadecanoic acid; PD 185; NAA 173; Vanicol; Kam 3000; Kam 100; Kam 2000; Neo-Fat 18; Steric acid; Hystrene 80; Industrene R; Stearex Beads; Hystrene S-97; Neo-Fat 18-53; Neo-Fat 18-54; Neo-Fat 18-59; Neo-Fat 18-59; Neo-Fat 18-59; Neo-Fat 18-59			
10	13.26	0.27	C:\Database\NBS75K.L Anthracene, 2-methyl- Phenanthrene, 1-methyl- Anthracene, 2-methyl-	69330	000613-12-7 000832-69-9 000613-12-7	81
11	13.39	0.26	C:\Database\Wiley_Nist.L 4H-Cyclopenta[def]phenanthrene; Be nzo[def]fluorene; Methane, 4,5-phe nanthrylene-; Methylenephenanthren e; Phenanthrene, 4,5-methylene-; 4 ,5-Methylenephenanthrene; 4,5-Phen anthrylenemethane; Cyclopentaphena nthrene; 4H-Cyclopenta(def)phenant hrene; Cyclopenta	393937	000203-64-5	76
			4H-Cyclopenta[def]phenanthrene (CA S); 4,5-Methylenephenanthrene; Ben zo[def]fluorene; Methylenephenanth rene; 4,5-Phenanthrylenemethane; Methane, 4,5-phenanthrylene-; Phenanthrene, 4,5-methylene-; 4,5-METHY LENE PHENANTHRENE; Cyclopentaphenanthrene; 4H-Cyclo	393935	000203-64-5	62
			4H-Cyclopenta[def]phenanthrene	393938	000203-64-5	55
12	14.23	0.46	C:\Database\Wiley_Nist.L Hexadecanoic acid, butyl ester; Pa lmitic acid, butyl ester; n-Butyl hexadecanoate; n-Butyl palmitate; Butyl palmitate; Butyl ester of he xadecanoic acid	438635	000111-06-8	99
			Hexadecanoic acid, butyl ester Hexadecanoic acid, 1,1-dimethyleth yl ester; tert-Butyl palmitate #		000111-06-8 031158-91-5	
13	14.37	2.65	C:\Database\NBS75K.L Fluoranthene Fluoranthene Pyrene	69813	000206-44-0 000206-44-0 000129-00-0	93
14	14.68	0.28	<pre>C:\Database\Wiley_Nist.L Benzo[kl]xanthene</pre>	86283	000200-23-7	91

			<pre>Benzo[b]naphtho[1,2-d]furan; Napht ho[2,1-b][1]benzofuran #</pre>			
			Indeno[2,1-b]chromene,	86288	000243-24-3	83
15	14.72	0.13	<pre>C:\Database\Wiley_Nist.L Naphthalene, 1-phenyl- 1,4-Ethenoanthracene, 1,4-dihydro- ; 2,3-Naphthobarrelene</pre>		000605-02-7 027765-96-4	
			Cyclobuta[1'',2'':3,4;3'',4'':3',4 ']dicyclobuta[1,2:1',2']dibenzene, 4b,4c,8b,8c-tetrahydro-	69291	006574-36-3	76
16	14.75	1.55	C:\Database\NBS75K.L Pyrene Fluoranthene Fluoranthene	69813	000129-00-0 000206-44-0 000206-44-0	80
17	14.81	0.21	<pre>C:\Database\Wiley_Nist.</pre>			
18	15.10	0.26	C:\Database\NBS75K.L 11H-Benzo[b]fluorene 11H-Benzo[a]fluorene 11H-Benzo[b]fluorene	70412	000243-17-4 000238-84-6 000243-17-4	83
19	15.19	0.17	C:\Database\Wiley_Nist.L			
20	15.25	0.09	C:\Database\Wiley_Nist.L			
21	15.31	0.17	C:\Database\NBS75K.L 11H-Benzo[b]fluorene 11H-Benzo[a]fluorene 11H-Benzo[a]fluorene	26849	000243-17-4 000238-84-6 000238-84-6	90
22	15.36	0.92	C:\Database\NBS75K.L Octadecanoic acid, butyl ester [1]Benzothiopyrano[4,3-b]benzo[e]i ndole Octadecanoic acid, butyl ester	40342	000123-95-5 000846-35-5 000123-95-5	58
23	15.40	0.14	C:\Database\Wiley_Nist.L			
24	15.45	0.44	C:\Database\Wiley_Nist.L 9-Octadecenamide, (Z)- 13-Docosenamide, (Z)-; Erucylamide; Erucyl amide; (Z)-13-Docosenamide; 13-Docosenamide; Armid E; cis-1 3-Docosenamide; cis-13-Docosenoamide; Crodamide E, ER; Erucamide; Erucic acid amide; Kemamide E; Petra c eramide; Polydis TR 131; Unislip 1753; (13Z)-13-D	443615	000301-02-0 000112-84-5	
			9-Octadecenamide, (Z)- (CAS); OLEO AMIDE; OELIC ACID AMIDE; Oleamide; Adogen 73; Oleylamide; Slip-ezeCI); Oleic acid amide; Slip-eze; Arm oslip CP; Crodamide O; Crodamide O R; Amide O; Diamide O 200; Diamit O 200	430453	000301-02-0	83
25	15.67	0.30	C:\Database\Wiley_Nist.L			
26	15.89	0.30	C:\Database\WILEY.L			

Docosane	(CAS);	n-Docosane;	C22H46	438159	000629-97-0	52
STANDARD): Norm	al-docosane				

			•			
27	16.08	0.27	<pre>C:\Database\Wiley_Nist.L</pre>			
28	16.11	0.16	C:\Database\Wiley_Nist.L			
29	16.19	0.29	C:\Database\Wiley_Nist.L			
30	16.39	0.53	C:\Database\Wiley_Nist.L			
31	16.54	0.82	C:\Database\Wiley_Nist.L			
32	16.67	2.39	C:\Database\NBS75K.L		BW	
33	16.69	1.28	C:\Database\Wiley_Nist.L Benz[a]anthracene Benz[a]anthracene (CAS); 1,2-Benza nthracene; Benzo[a]anthracene; Tet raphene; Benzanthrene; Benzanthrac ene; Benzoanthracene; 1,2-Benzanth rene; 1,2-Benzoanthracene; Benzo[b]phenanthrene; 1,2-Benz[a]anthrace ne; 2,3-Benzophenanthrene; Benzo(a)phenanthrene; BA	413109		76
			Triphenylene; Benzo[1]phenanthrene; Isochrysene; 1,2,3,4-Dibenznapht halene; 9,10-Benzophenanthrene; 9,10-Benzphenanthrene	413139	000217-59-4	76
34	16.77	2.17	C:\Database\NBS75K.L Triphenylene Chrysene Triphenylene	70850	000217-59-4 000218-01-9 000217-59-4	95
35	16.89	1.54	C:\Database\NBS75K.L Octacosan Hexadecane Hexadecane		000544-76-3 000544-76-3	
36	17.12	3.72	<pre>C:\Database\Wiley_Nist.L</pre>			
37	17.36	3.64	C:\Database\NBS75K.L Benz[a]anthracene, 10-methyl- Benz[a]anthracene, 11-methyl- Benz[a]anthracene, 9-methyl-	32452	002381-15-9 006111-78-0 002381-16-0	91
38	17.52	3.96	<pre>C:\Database\NBS75K.L Squalene 2,6-Octadien-1-ol, 3,7-dimethyl-, acetate, (E)- 3,7,11-Tridecatrienoic acid, 4,8,1 2-trimethyl-, methyl ester, (Z,E)-</pre>	69490	007683-64-9 000105-87-3 036237-70-4	64
39	17.60	2.11	<pre>C:\Database\Wiley_Nist.L</pre>			
40	17.91		C:\Database\NBS75K.L Triacontan Pentadecane Tetracosane		000629-62-9 000646-31-1	
41	17.98	2.52	C:\Database\Wiley_Nist.L			

			Benzamide, 4-fluoro-N-(1-furan-2-y lmethyl-2,5-dioxo-4-trifluoromethy limidazolidin-4-yl)-	270374	000000-00-0	38
			4,4'-Difluorobenzophenone 2,4'-Difluorobenzophenone		000345-92-6 000342-25-6	
42	18.11	2.61	<pre>C:\Database\Wiley_Nist.L</pre>			
43	18.62	2.93	<pre>C:\Database\NBS75K.L Benz[e]acephenanthrylene Benzo[e]pyrene Benzo[a]pyrene</pre>	34433	000205-99-2 000192-97-2 000050-32-8	91
44	18.74	2.80	<pre>C:\Database\Wiley_Nist.L</pre>			
45	18.84	3.01	<pre>C:\Database\Wiley_Nist.L</pre>			
46	18.98	2.26	C:\Database\Wiley_Nist.L			
47	19.17	2.06	<pre>C:\Database\Wiley_Nist.L</pre>			
48	19.22	1.79	C:\Database\NBS75K.L Perylene Perylene Benzo[e]pyrene	34430	000198-55-0 000198-55-0 000192-97-2	90
49	19.36	3.68	<pre>C:\Database\NBS75K.L Benzo[a]pyrene Benzo[e]pyrene Benz[e]acephenanthrylene</pre>	34433	000050-32-8 000192-97-2 000205-99-2	89
50	19.81	1.10	<pre>C:\Database\Wiley_Nist.L</pre>			
51	20.09	0.58	<pre>C:\Database\Wiley_Nist.L</pre>			
52	20.84	0.98	C:\Database\Wiley_Nist.L .betaiso-methyl ionone 3,6-Dimethyl-2-(1-(trimethylsilyl) ethen-2-yl)pyrazine	70703		64
F 2	01 01	0 40	(17.alpha.H,21.beta.H)-Hopane	200233	000000-00-0	39
53	21.81	0.48	<pre>C:\Database\Wiley_Nist.L Propenamide, 3-(3-methoxyphenyl)-2 -methyl-; (2E)-3-(3-Methoxyphenyl) -2-methyl-2-propenamide #</pre>	53648	000000-00-0	83
			Isocopalane 1,1,3,3-TETRAMETHYL-1,3-DISILAINDA		079191-19-8 054113-93-8	
54	21.95	1.14	<pre>C:\Database\Wiley_Nist.L</pre>			
55	22.49	1.07	<pre>C:\Database\Wiley_Nist.L Benzo[ghi]perylene (CAS); 1,12-Ben zoperylene; Benzo-1,12-perylene; 1 ,12-Benzperylene; 1,2-BENZOPERYLEN E; benzo [ghi] perylene</pre>	429254	000191-24-2	81
			Dibenzo[def,mno]chrysene; Anthanth rene; Anthanthren; Dibenzo[cd,jk]p yrene; Anthranthrene; Dibenzo(cd,j k)pyrene Benzo[ghi]porylone		000191-26-4	
E C	72 11	0 75	Benzo[ghi]perylene	467640	000191-24-2	OΤ
26	∠3.44	0.75	C:\Database\NBS75K.L			

 Dibenzo[def,mno]chrysene
 38895 000191-26-4 90

 Indeno[1,2,3-cd]pyrene
 72175 000193-39-5 81

 Dibenzo[def,mno]chrysene
 72174 000191-26-4 81

PAK_PCB.M Fri Sep 08 18:09:29 2017

38.00 36.00 34.00 32.00 u-C40 30.00 28.00 26.00 24.00 TIC: 1001027.D 22.00 20.00 18.00 File :Y:\ACER-MSD\1\2017\ASD_170315\1001D27,D
Operator : Acquired : 16 Mar 2017 10:51 using AcqMethod
Instrument : ASD
Sample Name: KW-Std
Misc Info : Vial Number: 10 u-C58 16.00 14.00 u-C50 12.00 10.00 8.00 6.00 n-C10 000006 800000 700000 500000 400000 300000 200000 100000 Abundance 000009 Time->

using AcqMethod RR_H53.M

GEOlogik Wilbers & Oeder GmbH Kerstingskamp 12

48159 MÜNSTER

20. September 2017

PRÜFBERICHT 31081705e

Auftragsnr. Auftraggeber: 10-1728

Projektbezeichnung: Grabeland Schwerte - Teilfläche Garagenhof

Probenahme: durch Auftraggeber am 24.08.2017

Probentransport: durch Laboratorien Dr. Döring GmbH am 30.08.2017

Probeneingang: 31.08.2017

Prüfzeitraum: 31.08.2017 – 20.09.2017

Probennummer: 47429 - 47434 / 17

Probenmaterial: Boden

Verpackung: Weißglas (0,5 L)
Bemerkungen: z.T. Nachanalytik

Sonstiges: Der Messfehler dieser Prüfungen befindet sich im üblichen Rahmen. Näheres teilen wir Ihnen auf Anfrage gerne mit.

Die Prüfergebnisse beziehen sich ausschließlich auf die angegebenen Prüfgegenstände. Eine auszugsweise Vervielfältigung dieses Prüfberichts bedarf der schriftlichen Genehmigung durch die Laboratorien Dr. Döring GmbH.

Analysenbefunde: Seite 3 - 8
Messverfahren: Seite 2

Qualitätskontrolle:

Dr. Jens Krause (stellv. Laborleiter)

M.Sc. Malte Haak (Projektleiter)

Seite 1 von 8

Probenvorbereitung: DIN 19747

Messverfahren: Trockenmasse DIN EN 14346
TOC DIN EN 13137
Kohlenwasserstoffe (GC;F) DIN EN 14039

Phenol-Index DIN 38409-H16
Cyanide (F) DIN 18O 11262
Cyanide (E) DIN 38405-13
Chlorid DIN EN ISO 10304-1
Sulfat DIN EN ISO 10304-1

Arsen (F; E) DIN EN ISO 11885 (E22); -17294-2
Blei (F; E) DIN EN ISO 11885 (E22); -17294-2
Cadmium (F; E) DIN EN ISO 11885 (E22); -17294-2
Chrom (F; E) DIN EN ISO 11885 (E22); -17294-2
Kupfer (F; E) DIN EN ISO 11885 (E22); -17294-2
Nickel (F; E) DIN EN ISO 11885 (E22); -17294-2

Quecksilber (F; E) DIN EN ISO 12846 (E12)
Thallium (F) DIN EN ISO 17294-2

Zink (F; E) DIN EN ISO 11885 (E22); -17294-2

PAK DIN ISO 18287
PCB DIN EN 15308
BTEX DIN 38407-F9

LHKW DIN EN ISO 10301 (F4,HS-GC/MS)

EOX DIN 38414-S17
pH-Wert (W,E) DIN 38404-C5
el. Leitfähigkeit DIN EN 27888 (C8)
Eluat DIN EN 12457-4
Aufschluss DIN EN 13657

Prüfbericht 31081705e.doc

Seite 2 von 8

Labornummer	47429	47430	47431	47432
Probenbezeichnung	MP 1	MP 2	MP 3	MP 4
Entnahmetiefe	0,0-0,4 m	0,0-0,3 m	0,0-0,4 m	0,3-0,9 m
Dimension	[mg/kg TS]	[mg/kg TS]	[mg/kg TS]	[mg/kg TS]
Trockenmasse [%]	87,8	93,5	86,7	89,3
TOC [%]	1,4	1,9	10,6	5,8
Kohlenwasserstoffe, n-C ₁₀₋₂₂	< 5	12	15	23
Kohlenwasserstoffe, n-C ₁₀₋₄₀	35	140	120	370
Cyanid, gesamt	< 0,05	< 0,05	< 0,05	0,48
EOX	0,3	< 0,1	0,5	0,9
Arsen	10	11	13	15
Blei	74	30	140	120
Cadmium	0,7	0,8	0,7	0,5
Chrom	12	14	23	25
Kupfer	100	38	110	470
Nickel	81	38	72	470
Quecksilber	< 0,1	< 0,1	0,2	0,3
Thallium	0,3	0,2	0,4	0,3
Zink	110	77	240	360
2	110	, ,	210	000
PCB 28	< 0,001	< 0,001	< 0,001	< 0,001
PCB 52	< 0,001	< 0,001	< 0,001	0,002
PCB 101	< 0,001	< 0,001	0,001	0,022
PCB 138	0,001	< 0,001	0,002	0,130
PCB 153	0,001	< 0,001	0,002	0,093
PCB 180	0,001	< 0,001	0,002	0,099
Summe PCB (6 Kong.)	0,003	n.n.	0,007	0,346
Naphthalin	0,002	0,010	0,018	0,028
Acenaphthylen	0,002	0,005	0,012	0,025
Acenaphthen	0,002	0,006	0,013	0,009
Fluoren	0,002	0,007	0,015	0,010
Phenanthren	0,028	0,104	0,297	0,190
Anthracen	0,028	0,016	0,034	0,035
Fluoranthen	0,066	0,204	0,537	0,268
Pyren	0,051	0,168	0,372	0,202
Benzo(a)anthracen	0,040	0,122	0,306	0,248
Chrysen	0,037	0,113	0,302	0,243
Benzo(b)fluoranthen	0,059	0,276	0,520	0,364
Benzo(k)fluoranthen	0,019	0,081	0,111	0,081
Benzo(a)pyren	0,035	0,141	0,218	0,136
Indeno(1,2,3-cd)pyren	0,025	0,149	0,213	0,114
Dibenzo(a,h)anthracen	0,005	0,031	0,048	0,026
Benzo(g,h,i)perylen	0,024	0,133	0,169	0,110
Summe PAK (EPA)	0,403	1,566	3,185	2,069
. (,				_,300

28357 bremen

fon 04 21 · 2 07 22 75 fax 04 21 · 27 55 22

fon 05 11 · 26 13 99 64 fax 05 11 · 2 62 67 90

Labornummer	47429	47430	47431	47432
Probenbezeichnung	MP 1	MP 2	MP 3	MP 4
Entnahmetiefe	0,0-0,4 m	0,0-0,3 m	0,0-0,4 m	0,3-0,9 m
Dimension	[mg/kg TS]	[mg/kg TS]	[mg/kg TS]	[mg/kg TS]
Benzol	< 0,01	< 0,01	< 0,01	0,11
Toluol	< 0,01	0,01	0,01	0,19
Ethylbenzol	< 0,01	< 0,01	0,01	0,01
Xylole	< 0,01	0,03	0,13	0,26
Trimethylbenzole	< 0,01	< 0,01	0,03	0,12
Summe BTEX	n.n.	0,04	0,18	0,69
Vinylchlorid	< 0,01	< 0,01	< 0,01	< 0,01
1,1-Dichlorethen	< 0,01	< 0,01	< 0,01	< 0,01
Dichlormethan	< 0,01	< 0,01	< 0,01	< 0,01
1,2-trans-Dichlorethen	< 0,01	< 0,01	< 0,01	< 0,01
1,1-Dichlorethan	< 0,01	< 0,01	< 0,01	< 0,01
1,2-cis-Dichlorethen	< 0,01	< 0,01	< 0,01	< 0,01
Tetrachlormethan	< 0,01	< 0,01	< 0,01	< 0,01
1,1,1-Trichlorethan	< 0,01	< 0,01	< 0,01	< 0,01
Chloroform	< 0,01	< 0,01	< 0,01	< 0,01
1,2-Dichlorethan	< 0,01	< 0,01	< 0,01	< 0,01
Trichlorethen	0,09	< 0,01	0,05	0,07
Dibrommethan	< 0,01	< 0,01	< 0,01	< 0,01
Bromdichlormethan	< 0,01	< 0,01	< 0,01	< 0,01
Tetrachlorethen	0,07	< 0,01	0,01	0,09
1,1,2-Trichlorethan	< 0,01	< 0,01	< 0,01	< 0,01
Dibromchlormethan	< 0,01	< 0,01	< 0,01	< 0,01
Tribrommethan	< 0,01	< 0,01	< 0,01	< 0,01
Summe LHKW	0,16	n.n.	0,06	0,16
Summe LHKW	0,16	n.n.	0,06	0,16

Labornummer	47429	47430	47431	47432
Probenbezeichnung	MP 1	MP 2	MP 3	MP 4
Entnahmetiefe	0,0-0,4 m	0,0-0,3 m	0,0-0,4 m	0,3-0,9 m
Dimension	ELUAT [μg/L]	ELUAT [μg/L]	ELUAT [μg/L]	ELUAT [μg/L]
pH-Wert bei 20 °C el. Leitfähigkeit [µS/cm] bei 25 °C Phenol-Index Cyanid, gesamt	8,5 86 < 10 < 5	8,1 155 < 10 < 5	8,2 142 < 10 < 5	9,0 86 < 10 < 5
Chlorid Sulfat	990 3.600	1.400 12.000	990 21.000	1.800 5.700
Arsen Blei Cadmium Chrom Kupfer Nickel Quecksilber Zink	< 2,0 < 0,2 < 0,2 < 0,3 3,5 < 1,0 < 0,1 < 2,0	< 2,0 0,3 < 0,2 0,3 5,5 1,8 < 0,1 4,8	< 2,0 0,6 < 0,2 4,2 3,8 1,2 < 0,1 3,4	11 0,4 < 0,2 1,0 17 5,5 < 0,1 2,9

Labornummer	47433	47434	
Probenbezeichnung	MP 5	MP 6	
Entnahmetiefe	0,2-0,7 m	0,4-1,0 m	
Dimension	[mg/kg TS]	[mg/kg TS]	
Difference	[mg/kg 10]	[mg/kg 10]	
Trockenmasse [%]	91,0	82,9	
TOC [%]	1,7	1,3	
Kohlenwasserstoffe, n-C ₁₀₋₂₂	26	16	
Kohlenwasserstoffe, n-C ₁₀₋₄₀	300	110	
Cyanid, gesamt	< 0,05	0,19	
EOX	0,4	0,1	
	o , .	0,1	
Arsen	14	13	
Blei	74	750	
Cadmium	0,5	0,6	
Chrom	23	22	
Kupfer	170	160	
Nickel	97	92	
Quecksilber	< 0,1	< 0,1	
Thallium	0,2	0,3	
Zink	290	280	
PCB 28	< 0,001	< 0,001	
PCB 52	< 0,001	< 0,001	
PCB 101	0,002	0,001	
PCB 138	0,010	0,004	
PCB 153	0,008	0,004	
PCB 180	0,011	0,003	
Summe PCB (6 Kong.)	0,031	0,012	
		ŕ	
Naphthalin	0,039	0,019	
Acenaphthylen	0,022	0,101	
Acenaphthen	0,073	0,102	
Fluoren	0,086	0,240	
Phenanthren	1,02	2,70	
Anthracen	0,123	0,530	
Fluoranthen	1,52	4,59	
Pyren	1,06	3,16	
Benzo(a)anthracen	0,666	2,75	
Chrysen	0,660	2,50	
Benzo(b)fluoranthen	1,10	3,25	
Benzo(k)fluoranthen	0,298	0,993	
Benzo(a)pyren	0,589	1,92	
Indeno(1,2,3-cd)pyren	0,406	1,19	
Dibenzo(a,h)anthracen	0,080	0,291	
Benzo(g,h,i)perylen	0,382	1,04	
Summe PAK (EPA)	8,124	25,376	

Labornummer	47433	47434	
Probenbezeichnung	MP 5	MP 6	
Entnahmetiefe	0,2-0,7 m	0,4-1,0 m	
Dimension	[mg/kg TS]	[mg/kg TS]	
Benzol	< 0,01	< 0,01	
Toluol	< 0,01	< 0,01	
Ethylbenzol	< 0,01	< 0,01	
Xylole	< 0,01	< 0,01	
Trimethylbenzole	< 0,01	< 0,01	
Summe BTEX	n.n.	n.n.	
Vinylchlorid	< 0,01	< 0,01	
1,1-Dichlorethen	< 0,01	< 0,01	
Dichlormethan	< 0,01	< 0,01	
1,2-trans-Dichlorethen	< 0,01	< 0,01	
1,1-Dichlorethan	< 0,01	< 0,01	
1,2-cis-Dichlorethen	< 0,01	< 0,01	
Tetrachlormethan	< 0,01	< 0,01	
1,1,1-Trichlorethan	< 0,01	< 0,01	
Chloroform	< 0,01	< 0,01	
1,2-Dichlorethan	< 0,01	< 0,01	
Trichlorethen	< 0,01	< 0,01	
Dibrommethan	< 0,01	< 0,01	
Bromdichlormethan	< 0,01	< 0,01	
Tetrachlorethen	< 0,01	< 0,01	
1,1,2-Trichlorethan	< 0,01	< 0,01	
Dibromchlormethan	< 0,01	< 0,01	
Tribrommethan	< 0,01	< 0,01	
Summe LHKW	n.n.	n.n.	

haferwende 12

28357 bremen

	47400	47.40.4	
Labornummer	47433	47434	
Probenbezeichnung	MP 5	MP 6	
Entnahmetiefe	0,2-0,7 m	0,4-1,0 m	
Dimension	ELUAT [μg/L]	ELUAT [μg/L]	
pH-Wert bei 20 °C el. Leitfähigkeit [µS/cm] bei 25 °C Phenol-Index Cyanid, gesamt	8,8 104 < 10 < 5	7,6 88 < 10 < 5	
Chlorid Sulfat	1.500 12.000	990 11.000	
Arsen Blei Cadmium Chrom Kupfer Nickel Quecksilber Zink	5,1 1,6 < 0,2 1,9 18 6,1 < 0,1 9,8	2,4 2,1 < 0,2 < 0,3 8,0 2,2 < 0,1 2,0	

GEOlogik Wilbers & Oeder GmbH Kerstingskamp 12

48159 MÜNSTER

14. September 2017

PRÜFBERICHT 07091760

Auftragsnr. Auftraggeber: 10-1728

Projektbezeichnung: Grabeland Schwerte - Teilfläche Garagenhof

Probenahme: durch Auftraggeber am 24.08.2017

Probentransport: durch Laboratorien Dr. Döring GmbH am 30.08.2017

Probeneingang: 31.08.2017

Prüfzeitraum: 07.09.2017 - 14.09.2017

48500 - 48501 / 17 Probennummer:

Probenmaterial: Boden Verpackung: PE-Dose

Bemerkungen: Mischprobenerstellung gemäß Auftrag

Sonstiges: Der Messfehler dieser Prüfungen befindet sich im üblichen Rahmen. Näheres teilen wir Ihnen auf Anfrage gerne mit.

Die Prüfergebnisse beziehen sich ausschließlich auf die angegebenen Prüfgegenstände. Eine auszugsweise Vervielfältigung dieses Prüfberichts bedarf der schriftlichen Genehmigung durch die Laboratorien Dr. Döring GmbH.

Analysenbefunde: Seite 3 Messverfahren: Seite 2

Qualitätskontrolle:

Dr. Ulrike Jakob (Projektleiterin)

Dr. Jens Krause (stellv. Laborleiter)

Prüfbericht 07091760.doc

haferwende 12

28357 bremen

fax 04 21 · 27 55 22

im schedetal 11 fon 04 21 · 2 07 22 75

freboldstraße 16 30455 hannover fon 05 11 · 26 13 99 64 fax 05 11 · 2 62 67 90

Seite 1 von 3

bankhaus neelmeyer ag swift neelde22 de95290200000000024000 ust-idnr de 170 350 601

gmbh, hrb 15929 gf dr. joachim döring st-nr 60/120/08234 www.dr-doering.com

Messverfahren:

Trockenmasse Molybdän (E) Antimon (E) Barium (E) Selen (E) PCB BTEX Eluat Aufschluss

extrahierbare lipophile Stoffe

Fluorid

Gesamtgehalt an gelösten Feststoffen Glühverlust

DOC

DIN EN 14346

DIN EN ISO 17294-2 DIN EN ISO 17294-2 DIN EN ISO 17294-2 DIN EN ISO 17294-2

DIN EN 15308 DIN 38407-F9 DIN EN 12457-4 DIN EN 13657 LAGA KW/04

DIN EN ISO 10304-1

DIN 38409-1 DIN EN 15169 DIN EN 1484

Labornummer	48500	48501	
Probenbezeichnung	MP A	MP B	
Entnahmetiefe	0,0 - 0,4 m	0,2 - 1,0 m	
Dimension	[mg/kg TS]	[mg/kg TS]	
Trockenmasse [%] Glühverlust [%] extrah. lipophile Stoffe [%] PCB 28 PCB 52 PCB 101 PCB 118 PCB 138 PCB 138 PCB 153 PCB 180 Summe PCB (7 Kong.)	91,0 5,4 0,01 < 0,001 < 0,001 < 0,001 0,001 0,001 0,001 0,003	85,6 4,9 0,05 < 0,001 < 0,001 0,008 0,002 0,048 0,035 0,038 0,131	
Benzol Toluol Ethylbenzol Xylole Trimethylbenzole Styrol Cumol Summe BTEX	< 0,01 0,01 0,01 0,08 0,03 < 0,01 < 0,01 0,13	0,11 0,19 0,01 0,26 0,12 < 0,01 < 0,01 0,69	

Labornummer	48500	48501	
Probenbezeichnung	MP A	MP B	
Entnahmetiefe	0,0 - 0,4 m	0,2 - 1,0 m	
Dimension	ELUAT [μg/L]	ELUAT [μg/L]	
Gesamtgehalt an gelösten Feststoffen [mg/L] Cyanid, leicht freisetzbar	< 100 < 5	< 100 < 5	
DOC	280	660	
Fluorid	560	810	
Barium Molybdän Antimon Selen	100 11 0,9 3,6	14 12 3,6 < 2,0	

GEOlogik Wilbers & Oeder GmbH Kerstingskamp 12

48159 MÜNSTER

13. September 2017

PRÜFBERICHT 08091717

Auftragsnr. Auftraggeber: 10-1728

Projektbezeichnung: Grabeland Schwerte - Teilfläche Garagenhof

Probenahme: durch Auftraggeber am 07.09.2017

Boden

Seite 2

Probentransport: durch Laboratorien Dr. Döring GmbH am 07.09.2017

Probeneingang: 08.09.2017

Prüfzeitraum: 08.09.2017 – 13.09.2017

Probennummer: 48575 / 17

Verpackung: Weißglas (0,5 L)

Bemerkungen: -

Sonstiges: Der Messfehler dieser Prüfungen befindet sich im üblichen Rahmen. Näheres teilen wir Ihnen auf Anfrage gerne mit.

Die Prüfergebnisse beziehen sich ausschließlich auf die angegebenen Prüfgegenstände. Eine auszugsweise Vervielfältigung dieses Prüfberichts bedarf der schriftlichen Genehmigung durch die Laboratorien Dr. Döring GmbH.

Analysenbefunde: Seite 3 - 4

Qualitätskontrolle:

Messverfahren:

Probenmaterial:

B. Sc. Tanja Staal (Projektleiterin)

M. Sc. Malte Haak (Projektleiter)

Seite 1 von 4

Probenvorbereitung: DIN 19747

Messverfahren: Trockenmasse DIN EN 14346
TOC DIN EN 13137
Kehlenwessersteffe (CC:F) DIN EN 14030

Kohlenwasserstoffe (GC;F)
Cyanide (F)

DIN EN 13137

Arsen DIN EN ISO 11885 (E22) Blei DIN EN ISO 11885 (E22) Cadmium DIN EN ISO 11885 (E22) Chrom DIN EN ISO 11885 (E22) DIN EN ISO 11885 (E22) Kupfer Nickel DIN EN ISO 11885 (E22) Quecksilber DIN EN 12846 (E12) Zink DIN EN ISO 11885 (E22) Thallium **DIN EN ISO 17294-2** PAK **DIN ISO 18287 PCB DIN EN 15308**

BTEX DIN 38407-9
LHKW DIN EN ISO 10301 (F4,HS-GC/MS)

EOX DIN 38414-17 Aufschluss DIN EN 13657

Labornummer	48575	
Probenbezeichnung	MP C	
Entnahmetiefe	0,5 - 2,0 m	
Dimension	[mg/kg TS]	
Differsion	[IIIg/kg 13]	
Trockenmasse [%] TOC [%] Kohlenwasserstoffe, n-C ₁₀₋₂₂	81,4 0,66 < 5	
Kohlenwasserstoffe, n-C ₁₀₋₄₀	< 5	
Cyanid, gesamt	< 0,05	
EOX	0,6	
Arsen Blei Cadmium Chrom Kupfer Nickel Quecksilber Thallium Zink	6,0 27 0,3 15 21 30 < 0,1 < 0,1 55	
PCB 28 PCB 52 PCB 101 PCB 138 PCB 153 PCB 180 Summe PCB (6 Kong.)	< 0,001 < 0,001 < 0,001 < 0,001 < 0,001 < 0,001 n.n.	
Naphthalin Acenaphthylen Acenaphthen Fluoren	< 0,001 < 0,001 < 0,001	
Phenanthren	0,001	
Anthracen	0,005 0,001	
Fluoranthen	0,009	
Pyren	0,001	
Benzo(a)anthracen	0,005	
Chrysen	0,005	
Benzo(b)fluoranthen	0,007	
Benzo(k)fluoranthen	0,003	
Benzo(a)pyren	0,004	
Indeno(1,2,3-cd)pyren	0,004	
Dibenzo(a,h)anthracen	0,001	
Benzo(g,h,i)perylen	0,004	
Summe PAK (EPA)	0,050	

Labornummer	48575	
Probenbezeichnung	MP C	
Entnahmetiefe	0,5 - 2,0 m	
Dimension	[mg/kg TS]	
Benzol	< 0,01	
Toluol	< 0,01	
Ethylbenzol	< 0,01	
Xylole	< 0,01	
Trimethylbenzole	< 0,01	
Summe BTEX	n.n.	
Vinylchlorid	< 0,01	
1,1-Dichlorethen	< 0,01	
Dichlormethan	< 0,01	
1,2-trans-Dichlorethen	< 0,01	
1,1-Dichlorethan	< 0,01	
1,2-cis-Dichlorethen	< 0,01	
Tetrachlormethan	< 0,01	
1,1,1-Trichlorethan	< 0,01	
Chloroform	< 0,01	
1,2-Dichlorethan	< 0,01	
Trichlorethen	< 0,01	
Dibrommethan	< 0,01	
Bromdichlormethan	< 0,01	
Tetrachlorethen	< 0,01	
1,1,2-Trichlorethan	< 0,01	
Dibromchlormethan	< 0,01	
Tribrommethan	< 0,01	
Summe LHKW	n.n.	

GEOlogik Wilbers & Oeder GmbH Feldstiege 100

48161 MÜNSTER-NIENBERGE

12. Oktober 2017

PRÜFBERICHT 09101714

Auftragsnr. Auftraggeber: 10-1728

Projektbezeichnung: Grabeland Schwerte - Teilfläche Zufahrt

Probenahme: durch Auftraggeber am 04.10.2017

Probentransport: durch Laboratorien Dr. Döring GmbH am 06.10.2017

Probeneingang: 07.10.2017

Prüfzeitraum: 09.10.2017 – 12.10.2017

Probennummer: 53140 - 53141 / 17
Probenmaterial: Bauschutt/Boden

Verpackung: PE-Eimer

Bemerkungen: -

Sonstiges: Der Messfehler dieser Prüfungen befindet sich im üblichen Rahmen. Näheres teilen wir Ihnen auf Anfrage gerne mit.

Die Prüfergebnisse beziehen sich ausschließlich auf die angegebenen Prüfgegenstände. Eine auszugsweise Vervielfältigung dieses Prüfberichts bedarf der schriftlichen Genehmigung durch die Laboratorien Dr. Döring GmbH.

Analysenbefunde: Seite 3 - 5
Messverfahren: Seite 2

Qualitätskontrolle:

B. Sc. Tanja Staal (Projektleiterin)

Dr. Joachim Döring (Geschäftsführer)

Seite 1 von 5

Probenvorbereitung: DIN 19747

Messverfahren: Trockenmasse DIN EN 14346
TOC DIN EN 13137
Kohlenwasserstoffe (GC;F) DIN EN 14039

Phenol-Index DIN 38409-H16
Cyanide (F) DIN 18O 11262
Cyanide (E) DIN 38405-13
Chlorid DIN EN ISO 10304-1
Sulfat DIN EN ISO 10304-1

Arsen (F; E) DIN EN ISO 11885 (E22); -17294-2
Blei (F; E) DIN EN ISO 11885 (E22); -17294-2
Cadmium (F; E) DIN EN ISO 11885 (E22); -17294-2
Chrom (F; E) DIN EN ISO 11885 (E22); -17294-2
Kupfer (F; E) DIN EN ISO 11885 (E22); -17294-2
Nickel (F; E) DIN EN ISO 11885 (E22); -17294-2

Quecksilber (F; E) DIN EN ISO 12846 (E12) Thallium (F) DIN EN ISO 17294-2

Zink (F; E) DIN EN ISO 11885 (E22); -17294-2

PAK DIN ISO 18287
PCB DIN EN 15308
BTEX DIN 38407-F9

LHKW DIN EN ISO 10301 (F4,HS-GC/MS)

EOX DIN 38414-S17
pH-Wert (W,E) DIN 38404-C5
el. Leitfähigkeit DIN EN 27888 (C8)
Eluat DIN EN 12457-4
Aufschluss DIN EN 13657

Labornummer	53140	53141	
Probenbezeichnung	MPI	MP II	
Entnahmetiefe	0,0 - 0,2 m	0,17 - 0,3 m	
Dimension	[mg/kg TS]	[mg/kg TS]	
Trockenmasse [%]	90,5	85,7	
TOC [%]		0,41	
Kohlenwasserstoffe, n-C ₁₀₋₂₂		< 5	
Kohlenwasserstoffe, n-C ₁₀₋₄₀	7	6	
Cyanid, gesamt		0,10	
EOX	0,2	0,1	
Arsen	2,8	3,0	
Blei	5,0	8,0	
Cadmium	< 0,1	< 0,1	
Chrom	25	22	
Kupfer	34	51	
Nickel	55	190	
Quecksilber	< 0,1	< 0,1	
Thallium		< 0,1	
Zink	28	38	
PCB 28	< 0,001	< 0,001	
PCB 52	< 0,001	< 0,001	
PCB 101	< 0,001	< 0,001	
PCB 138	< 0,001	< 0,001	
PCB 153	< 0,001	< 0,001	
PCB 180	< 0,001	< 0,001	
Summe PCB (6 Kong.)	n.n.	n.n.	
Naphthalin	0,002	0,001	
Acenaphthylen	< 0,001	< 0,001	
Acenaphthen	0,001	< 0,001	
Fluoren	0,001	< 0,001	
Phenanthren	0,025	0,006	
Anthracen	0,007	0,001	
Fluoranthen	0,024	0,016	
Pyren	0,016	0,011	
Benzo(a)anthracen	0,006	0,008	
Chrysen	0,005	0,007	
Benzo(b)fluoranthen	0,006	0,011	
Benzo(k)fluoranthen	0,002	0,004	
Benzo(a)pyren	0,003	0,006	
Indeno(1,2,3-cd)pyren	0,001	0,004	
Dibenzo(a,h)anthracen	0,001	0,001	
Benzo(g,h,i)perylen	0,003	0,005	
Summe PAK (EPA)	0,103	0,081	

Labornummer		53141	
Probenbezeichnung		MP II	
Entnahmetiefe		0,17 - 0,3 m	
Dimension		[mg/kg TS]	
Benzol		< 0,01	
Toluol		< 0,01	
Ethylbenzol		< 0,01	
Xylole		< 0,01	
Trimethylbenzole		< 0,01	
Summe BTEX		n.n.	
Vinylchlorid		< 0,01	
1,1-Dichlorethen		< 0,01	
Dichlormethan		< 0,01	
1,2-trans-Dichlorethen		< 0,01	
1,1-Dichlorethan		< 0,01	
1,2-cis-Dichlorethen		< 0,01	
Tetrachlormethan		< 0,01	
1,1,1-Trichlorethan		< 0,01	
Chloroform		< 0,01	
1,2-Dichlorethan		< 0,01	
Trichlorethen		< 0,01	
Dibrommethan		< 0,01	
Bromdichlormethan		< 0,01	
Tetrachlorethen		< 0,01	
1,1,2-Trichlorethan		< 0,01	
Dibromchlormethan		< 0,01	
Tribrommethan Summe LHKW		< 0,01	
Sullille LUKW		n.n.	ļ

Labornummer	53140	53141	
Probenbezeichnung	MPI	MP II	
Entnahmetiefe	0,0 - 0,2 m	0,17 - 0,3 m	
Dimension	ELUAT [μg/L]	ELUAT [μg/L]	
pH-Wert bei 20 °C el. Leitfähigkeit [µS/cm] bei 25 °C Phenol-Index Cyanid, gesamt	12,4 6.860 < 10	12,1 2.710 < 10 < 5	
Chlorid	4.700	4.200	
Sulfat	2.400	3.800	
Arsen Blei Cadmium Chrom Kupfer Nickel Quecksilber Zink	< 2,0 < 0,2 < 0,2 1,5 42 3,2 < 0,1 3,1	< 2,0 2,2 < 0,2 2,2 40 14 < 0,1	

Anlage 4.2

Ergebnisse der chemischen Untersuchungen

 Tabellarische Darstellung der Ergebnisse der chemischen Untersuchungen

Untersuchungs	ergebnisse	Boden; Gra	beland Rose	nweg in Schwer	te - Teilfläche	Garagenhof	(Boden Origin	alsubstanz)															
				KW	LHKW	BTEX	Benzol	EOX	PAK n. EPA	Naphthalin	Benzo(a) pyren	PCB	As	Pb	Cd	Cr ges.	Cu	Ni	Hg	Zn	TI	Cyanide ges.	TOC
				[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[Masse-%]
			Vergleicl	hswerte Gefährd	lungsabschät	tzung (hier: LA	WA-Liste)*																
	1			< 300	< 1	< 2	< 0,1	-	< 2	< 1		(Gefährdungsa	abschätzung (hier: BBodSc		gspfad Boder		Prüfwerte für \	Wohngebiete 1	**		
	2 (Prüfw			300 - 1.000	1 - 5	2 - 10	0,1 - 0,5	-	2 - 10	1 - 2	4	0,8	50	400	20	400	-	140	20	-	-	50	-
3 (M	aßnahmenso	chwellenwert)	1.000 - 5.000	5 - 25	10 - 30	0,5 - 3	-	10 - 100	5		Gef	ährdungsabs	chätzung (hie	r: BBodSchV	- 0.1	ofad Boden - I	Mensch Prü	fwerte für Kin	derspielfläch	en **		
	4			> 5.000	> 25	> 30	> 3	-	> 100	> 5	2	0,4	25	200	10	200	-	70	10	-		50	-
									Vergleic	hswerte abfal													
Z) (hier: Bode			100	1	1	-	1	3	-	0,3	0,05	10	40	0,4	30	20	15	0,1	60	0,4	-	0,5 (1,0) ¹⁾
	Z 0*4			200	1	1	-	1	3	-	0,6	0,1	15	140	1	120	80	100	1	300	0,7	-	0,5
	Z 1			300 (600) ²⁾	1	1	-	3	3 (9) ³⁾	-	0,9	0,15	45	210	3	180	120	150	1,5	450	2,1	3	1,5
	Z 2			1.000 (2.000)2)	1	1	-	10	30	-	3	0,5	150	700	10	600	400	500	5	1.500	7	10	5
	> Z 2	2		> 1.000 (2.000) ²	>1	> 1	-	> 10	> 30	-	> 3	> 0,5	> 150	> 700	> 10	> 600	> 400	> 500	> 5	> 1.500	>7	> 10	> 5
Probenbezeichn una	Labornum	Auffüllung (A) / Geogen	Entnahme- tiefe [m]	KW	LHKW	BTEX	Benzol	EOX	PAK n. EPA	Naphthalin	Benzo(a) pyren	PCB	As	Pb	Cd	Cr ges.	Cu	Ni	Hg	Zn	TI	Cyanide ges.	TOC
ung	11101	(G)	ueie [iii]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[Masse-%]
IP 1	47429	A	0,0 - 0,4	< 5 (35)	0,16	n. n.	< 0,01	0,3	0,403	0,002	0,035	0,003	10	74	0,7	12	100	81	0,3	110	0,3	< 0,05	1,4
IP 2	47430	A	0,0 - 0,3	12 (140)	n. n.	0,04	< 0,01	<0,1	1,566	0,010	0,141	n. n.	11	30	0,8	14	38	3 <mark>8</mark>	0,2	77	0,2	< 0,05	1,9
1P 3	47431	A	0,0 - 0,4	15 (120)	0,06	0,18	< 0,01	4,4 / 0,5 ⁵⁾	3,185 ³⁾	0,018	0,218	0,007	13	140	0,7	23	110	72	0,4	240	0,4	< 0,05	10,6
1P 4	47432	A	0,3 - 0,9	23 (370)	0,16	0,69	0,11	0,9	2,069	0,028	0,136	0,346	15	120	0,5	25	470	470	0,3	360	0,3	0,48	5,8
IP 5	47433	A	0,2 - 0,7	23 (300)	n. n.	n. n.	< 0,01	12 / 0,4 ⁵⁾	8,124 ³⁾	0,039	0,589	0,031	14	74	0,5	23	170	97	< 0,1	290	0,2	< 0,05	1,7
1P 6	47434	A	0,4 - 1,0	16 (110)	n. n.	n. n.	< 0,01	0,1	25,376	0,019	1,92	0,012	13	7 50	0,6	22	160	92	< 0,1	280	0,3	0,19	1,3
MP C ⁶⁾	48575	G	0,5 - 2,0	< 5 (< 5)	n. n.	n. n.	< 0,01	0,6	0,050	< 0,001	0,004	n. n.	6,0	27	0,3	15	21	30	< 0,1	55	< 0,1	< 0,05	0,66
MP II	53141	A	0,17 - 0,3	< 5 (6)	n. n.	n. n.	< 0,01	0,1	0,081	0,001	0,006	n. n.	3,0	8,0	< 0,1	22	51	190	< 0,1	38	< 0,1	0,10	0,41

Untersuchungsergebnisse Boden; Grabeland Rose	nweg in Schwer	te - Teilfläche	Garagenhof (Boden - Elua	t)

Untersuchungse	ergebnisse	Boden; Gra	beland Rose	nweg in Schwer	te - Teilfläche	Garagenhof ((Boden - Elua	t)									
				As	Pb	Cd	Cr ges.	Cu	Ni	Hg	Zn	Cyanide ges.	Phenolindex	Sulfat	Chlorid	pH-Wert	elektr. Leitfähigk.
				[µg/l]	[µg/l]	[µg/l]	[µg/l]	[µg/l]	[µg/l]	[µg/l]	[µg/l]	[µg/l]	[µg/l]	[mg/l]	[mg/l]	-	[µS/cm]
					Gi	efährdungsab	schätzung (hi	er: BBodSch\	/) - Wirkung:	spfad Boden	-Grundwass	er*					
	Prüfwe	rt		10	25	5	50	50	50	1	500	50	20	-	-	-	-
						Verglei	chswerte abfa	Ilrechtliche B	ewertung (hie	r: TR Boden	2004)**						
	Z 0/Z	0*		14	40	1,5	12,5	20	15	< 0,5	150	5	20	20	30	6,5 - 9,5	250
	Z 1.1			14	40	1,5	12,5	20	15	< 0,5	150	5	20	20	30	6,5 - 9,5	250
	Z 1.2			20	80	3	25	60	20	1	200	10	40	50	50	6 - 12	1.500
	Z 2			60	200	6	60	100	70	2	600	20	100	200	100	5,5 - 12	2.000
	> Z 2	2		> 60	> 200	>6	>60	> 100	> 70	> 2	> 600	>20	> 100	>200	>100	-	>2.000
Probenbezeichn ung	Labornum	Auffüllung (A) / Geogen	Entnahme- tiefe [m]	As	Pb	Cd	Cr ges.	Cu	Ni	Hg	Zn	Cyanide ges.	Phenolindex	Sulfat	Chlorid	pH-Wert	elektr. Leitfähigk.
ung	mer	(G)	ueie [m]	[µg/l]	[µg/l]	[µg/l]	[µg/l]	[µg/l]	[µg/l]	[µg/l]	[µg/l]	[µg/l]	[µg/l]	[mg/l]	[mg/l]	-	[µS/cm]
MP 1	47429	A	0,0 - 0,4	< 2,0	< 0,2	< 0,2	< 0,3	3,5	< 1,0	< 0,1	< 2,0	< 5	< 10	3,6	0,99	8,5	86
MP 2	47430	A	0,0 - 0,3	< 2,0	0,3	< 0,2	0,3	5,5	1,8	< 0,1	4,8	< 5	< 10	12	1,4	8,1	155
MP 3	47431	A	0,0 - 0,4	< 2,0	0,6	< 0,2	4,2	3,8	1,2	< 0,1	3,4	< 5	< 10	21	0,99	8,2	142
MP 4	47432	A	0,3 - 0,9	11	0,4	< 0,2	1,0	17	5,5	< 0,1	2,9	< 5	< 10	5,7	1,8	9,0	86
MP 5	47433	A	0,2 - 0,7	5,1	1,6	< 0,2	1,9	18	6,1	< 0,1	9,8	< 5	< 10	12	1,5	8,8	104
MP 6	47434	A	0,4 - 1,0	2,4	2,1	< 0,2	< 0,3	8,0	2,2	< 0,1	2,0	< 5	< 10	11	0,99	7,6	88

Farbgebung gem. Prüfwert der Bundes-Bodenschutz- und Allastenverordnung (BBodSchV) Wöhngebiebt, 1999

** Farbgebung gem. Prüfwert der Bundes-Bodenschutz- und Allastenverordnung (BBodSchV) Wöhngebiebt, 1999

*** Farbgebung gem. Prüfwert der Bundes-Bodenschutz- und Allastenverordnung (BBodSchV) Wöhngebiebt, 1999

*** Farbgebung gem. Prüfwert der Bundes-Bodenschutz- und Allastenverordnung (BBodSchV) Wöhngebiebt, 1999

*** Farbgebung gem. Prüfwert der Bundes-Bodenschutz- und Allastenverordnung (BBodSchV) Wöhngebiebt, 1999

*** Farbgebung gem. Prüfwert der Bundes-Bodenschutz- und Allastenverordnung (BBodSchV) Wöhngebiebt, 1999

*** Farbgebung gem. Prüfwert der Bundes-Bodenschutz- und Allastenverordnung (BBodSchV) Wöhngebiebt, 1999

*** Farbgebung gem. Prüfwert der Bundes-Bodenschutz- und Allastenverordnung (BBodSchV) Wöhngebiebt, 1999

*** Farbgebung gem. Prüfwert der Bundes-Bodenschutz- und Allastenverordnung (BBodSchV) Wöhngebiebt, 1999

*** Farbgebung gem. Prüfwert der Bundes-Bodenschutz- und Allastenverordnung ann die stellfrichen Kertenverten gem. Prüfwert der Bundes-Bodenschutz- und Allastenverordnung ann die stellfrichen Kertenverten gem. Prüfwert der Bundes-Bodenschutz- und Allastenverordnung ann die stellfrichen Kertenverten gem. Prüfwert gem. Prüfwert

^{**}Farbgebung gem. Prüfwert der Bundes-Bodenschutz- und Altiastenverordnung (BBodSchV) für den Wirkungspfad Boden -Grundwasser, 1999

Farbgebung gem. Zuordnungswerten der **Anforderungen an die stoffliche Verwertung von mineralischen Abfallen - Teil II: Technische Regeln für die Verwertung 1.2 Bodenmaterial (TR Boden) Stand 05.11.2004

Untersuchungse	ngebillose	Douell-Daus	chutt-Genie	nge Grabeianu i	Noseliwey III .	ociiweite - ie	illiache enem	. Garagerinoi	(Dauschutt • I	eststorry					
				KW	PAK n. EPA	EOX	PCB	As	Pb	Cd	Cr ges.	Cu	Ni	Hg	Zn
				[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]
					Vergleichsw	erte abfallreci	htliche Bewer	tung (hier: LA	GA-Richtlinie	, 1997/2003)					
	Z 0			100	1	1	0,02	20	100	0,6	50	40	40	0,3	120
	Z 1.1			300	5 (20)*	3	0,1	-	-	-	-	-	-	-	-
	Z 1.2			500	15 (50)*	5	0,5	-	-	-	-	-	-	-	-
	Z 2			1.000	75 (100)*	10	1	-	-	-	-	-	-	-	-
	> Z 2			>1.000	>75 (>100)*	< 10	>1	-	-	-	-	-	-	-	-
Probenbezeichn		Auffüllung (A) / Geogen	Entnahme-	KW	PAK n. EPA	EOX	PCB	As	Pb	Cd	Cr ges.	Cu	Ni	Hg	Zn
ung	mer	(G)	tiefe [m]	[mg/kg]	[mg/kg]	[mg/kg TR]	[mg/kg TR]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]
MP 1	47429	A	0,0 - 0,4	35	0,403	0,3	0,003	10	74	0,7	12	100	81	0,3	110
MP 2	47430	A	0,0 - 0,3	140	1,566	<0,1	n. n.	11	30	0,8	14	38	38	0,2	77
MP 3	47431	A	0,0 - 0,4	120	3,185	0,5	0,007	13	140	0,7	23	110	72	0,4	240
MP 4	47432	A	0,3 - 0,9	3 <mark>70</mark>	2,069	0,9	0,346	15	120	0,5	25	470	470	0,3	360
MP 5	47433	A	0,2 - 0,7	300	8,124	0,4	0,031	14	74	0,5	23	170	97	< 0,1	290
MP 6	47434	A	0,4 - 1,0	110	25,376	0,1	0,012	13	750	0,6	22	160	92	< 0,1	280

MP 6	47434	Α	0,4 - 1,0	110	25,376	0,1	0,012	13	750	0,6
* Im Einzelfall I	kann bis zu der	in Klammer	rn genannten	Werten abgewich	hen werden.					
n. n. = nicht na	chweisbar									
Durch Fettdrug	k gekennzeich	net: Übersch	hreitung von 2	Z 0 im Feststoff b	ei den Parame	tern As/Schwe	ermetalle			
Untraction		Dadas Davi		nge; Grabeland	Di	Cabunada T	-::612-b		6 /Danashust	Fluet)
Unitersuchung	sergeomsse	50den-baus	schutt-Geme	nge; Grabeianu	Rosenweg in	Scriwerte - 16	I ennache enem	i. Garagennoi	(Bauschutt -	Eluat)
				-11110/	-1-1-4- 1 -346	Codfee	Chlorid	۸n	Dh.	C

				pH-Wert	elektr. Leitf.	Sulfat	Chlorid	As	Pb	Cd	Cr ges.	Cu	Ni	Hg	Zn	Phenolindex
				-	[µS/cm]	[mg/l]	[mg/l]	[µg/l]	[µg/l]	[µg/l]	[µg/l]	[µg/l]	[µg/l]	[µg/l]	[µg/l]	[µg/l]
					Vergle	eichswerte ab	fallrechtliche	Bewertung (h	ier: LAGA-Ri	chtlinie, 1997	2003)					
	Z 0			7,0 - 12,5	500	50	10	10	20	2	15	50	40	0,2	100	< 10
	Z 1.1			7,0 -12,5	1.500	150	20	10	40	2	30	50	50	0,2	100	10
	Z 1.2	2		7,0 - 12,5	2.500	300	40	40	100	5	75	150	100	1	300	50
	Z 2			7,0 - 12,5	3.000	600	150	50	100	5	100	200	100	2	400	100
	> Z 2	2		< 7,0 > 12,5	> 3.000	> 600	> 150	> 50	> 100	> 5	> 100	> 200	> 100	> 2	> 400	> 100
Probenbezeichn	Labornum	Auffüllung (A) / Geogen	Entnahme-	pH-Wert	elektr. Leitf.	Sulfat	Chlorid	As	Pb	Cd	Cr ges.	Cu	Ni	Hg	Zn	Phenolindex
ung	mer	(G)	tiefe [m]	-	[mg/kg]	[mg/l]	[mg/l]	[µg/l]	[µg/l]	[µg/l]	[µg/l]	[µg/l]	[µg/l]	[µg/l]	[µg/l]	[µg/l]
MP 1	47429	Α	0,0 - 0,4	8,5	86	3,6	0,99	< 2,0	< 0,2	< 0,2	< 0,3	3,5	< 1,0	< 0,1	< 2,0	< 10
MP 2	47430	Α	0,0 - 0,3	8,1	155	12	1,4	< 2,0	0,3	< 0,2	0,3	5,5	1,8	< 0,1	4,8	< 10
MP 3	47431	Α	0,0 - 0,4	8,2	142	21	0,99	< 2,0	0,6	< 0,2	4,2	3,8	1,2	< 0,1	3,4	< 10
MP 4	47432	Α	0,3 - 0,9	9,0	86	5,7	1,8	11	0,4	< 0,2	1,0	17	5,5	< 0,1	2,9	< 10
MP 5	47433	A	0,2 - 0,7	8,8	104	12	1,5	5,1	1,6	< 0,2	1,9	18	6,1	< 0,1	9,8	< 10

Untersuchungs	ergebnisse	Bauschutt G	Frabeland Ro	senweg in Sch	werte - Teilfläd	he Zufahrt (B	auschutt - Fe	ststoff)							
				KW	PAK n. EPA	EOX	PCB	As	Pb	Cd	Cr ges.	Cu	Ni	Hg	Zn
				[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]	[mg/kg TR]
					Vergleichsw	erte abfallreci	htliche Bewer	tung (hier: LA	GA-Richtlinie	, 1997/2003)					
	Z 0			100	1	1	0,02	20	100	0,6	50	40	40	0,3	120
	Z 1.1			300	5 (20)*	3	0,1	-	-	-	-	-	-	-	-
	Z 1.2			500	15 (50)*	5	0,5	-	-	-	-	-	-	-	-
	Z 2			1.000	75 (100)*	10	1	-	-	-	-	-	-	-	-
	> Z :	2		>1.000	>75 (>100)*	< 10	> 1	-	-		1	-	-	-	-
Probenbezeichn	Labornum	Auffüllung (A) / Geogen	Entnahme- tiefe [m]	KW	PAK n. EPA	EOX	PCB	As	Pb	Cd	Cr ges.	Cu	Ni	Hg	Zn
ung	mer	(G)	ueie [iii]	[mg/kg]	[mg/kg]	[mg/kg TR]	[mg/kg TR]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]
MP I	53140	A	0,0 - 0,2	7	0,103	0,2	n. n.	2,8	5,0	< 0,1	25	35	55	< 0,1	28
MP II	53141	A	0.17 - 0.3	6	0.081	0.1	n.n.	3.0	8.0	< 0.1	22	51	190	< 0.1	38

Untersuchungsergebnisse Bauschutt; Grabeland Rosenweg in Schwerte - Teilfläche Zufahrt (Bauschutt - Eluat)

ontersacinangs								,								
				pH-Wert	elektr. Leitf.	Sulfat	Chlorid	As	Pb	Cd	Cr ges.	Cu	Ni	Hg	Zn	Phenolindex
				-	[µS/cm]	[mg/l]	[mg/l]	[µg/l]	[µg/l]	[µg/l]	[µg/l]	[µg/l]	[µg/l]	[µg/l]	[µg/l]	[µg/l]
					Vergle	ichswerte ab	fallrechtliche	Bewertung (h	ier: LAGA-Ri	chtlinie, 1997/	2003)					
	Z 0			7,0 - 12,5	500	50	10	10	20	2	15	50	40	0,2	100	< 10
	Z 1.1			7,0 - 12,5	1.500	150	20	10	40	2	30	50	50	0,2	100	10
	Z 1.2			7,0 - 12,5	2.500	300	40	40	100	5	75	150	100	1	300	50
	Z 2			7,0 - 12,5	3.000	600	150	50	100	5	100	200	100	2	400	100
	> Z 2	2		-	> 3.000	> 600	> 150	> 50	> 100	> 5	> 100	> 200	> 100	> 2	> 400	> 100
Probenbezeichn		Auffüllung (A) / Geogen	Entnahme-	pH-Wert	elektr. Leitf.	Sulfat	Chlorid	As	Pb	Cd	Cr ges.	Cu	Ni	Hg	Zn	Phenolindex
ung	mer	(G)	tiefe [m]	-	[mg/kg]	[mg/l]	[mg/l]	[µg/l]	[µg/l]	[µg/l]	[µg/l]	[µg/l]	[µg/l]	[µg/l]	[µg/l]	[µg/l]
MP I	53140	A	0,0 - 0,2	12,4	6.860	2,4	4,7	< 2,0	< 0,2	< 0,2	1,5	42	3,2	< 0,1	3,1	< 10
MP II	53141	A	0.17 - 0.3	12.1	2.710	3.8	4.2	< 2.0	2.2	< 0.2	2.2	40	14	< 0.1	12	< 10

Ш

Gutachterliche Stellungnahme Nr. 01 Ehem. Grabeland Rosenweg in Schwerte Teilfläche Zufahrt "Platanenallee"

Projekt: **BV Wohnbebauung**

Ehem. Grabeland

Rosenwea 58239 Schwerte

Auftraggeber: **GWG Schwerte eG**

> Rathausstraße 24 58239 Schwerte

Bearbeitung: Dipl.-Geol. Dr. U. Heede

Projektnummer: 10-1728

Datum: 21. Februar 2020

Geschäftsführer: Dipl.-Geogr. Artur Wilbers / Dipl.-Geol. Harald Oeder Sitz der Gesellschaft ist Münster (HRB 5096), Registergericht Münster Bankverbindung: Volksbank Münster eG IBAN: DE52 4016 0050 0100 1734 00

BIC: GENODEM1MSC

Vorgang und Aufgabenstellung

Die Gemeinnützige Wohnungsbaugenossenschaft Schwerte eG, Rathausstraße 24a in 58239 Schwerte, plant auf dem Grundstück des sog. "Ehem. Grabelands" (Teilfläche des Flurstücks 70 in der Flur 7 der Gemarkung Rosen) die Umsetzung einer Wohnbebauung.

Die Projektfläche wurde in der Vergangenheit als Standort einer Kleingartenanlage genutzt. Die Zufahrt erfolgte durch die östlich des Grabelands liegende sog. "Platanenallee". Die Projektfläche war bereits Gegenstand von orientierenden Altlasten- und Baugrunduntersuchungen. Eine Dokumentation und Bewertung der Untersuchungsergebnisse erfolgte im

 [1] Bericht zur orientierenden Baugrund- und Altlastenbewertung GEOlogik Wilbers & Oeder GmbH; Münster 06.03.2015

sowie im

[2]
Gutachten Orientierende Untersuchung
Ehem. Grabeland Rosenweg in Schwerte - Teilflächen ehem. Garagenhof und Zufahrt
GEOlogik Wilbers & Oeder GmbH; Münster 20.12.2017.

In Form eines Schreibens, das vom 12.07.2018 datiert, nahm der Kreis Unna – Stabsstelle für Mobilität und Umwelt – Stellung zu den Ergebnissen, die im Bereich der "Platanenallee" erzielt wurden.

In der vorliegenden Stellungnahme werden nach Auffassung des Unterzeichners erforderliche Erläuterungen zu diesem Schreiben vorgenommen.

Im Bereich der "Platanenallee" erzielte altlasten- und umwelttechnische Ergebnisse

Im Zuge der Untersuchung des Jahres 2017 [2] wurden die geringmächtige und aus Beton bestehende Fahrbahndecke (ca. 0,17 m bis 0,20 m) sowie die ebenfalls als geringmächtig zu beschreibende Tragschicht (ca. 0,10 m bis 0,13 m [Beton-, Ziegel- und Gesteinsbruch]) der Platanenallee überprüft.

Die bei der Probe des Betons (MP I) erzielten altlasten- und umwelttechnischen Ergebnisse sind generell als vollkommen unauffällig zu beschreiben und bei der Probe der Tragschicht (MP II) wurden lediglich bei den im Feststoff überprüften Parametern ein geringfügig erhöhter Cu- (51 mg/kg) sowie ein mäßig erhöhter Ni-Gehalt (190 mg/kg) festgestellt.

21.02.2020 2/5

Im Schreiben des Kreises Unna werden Bewertungen des Ergebnisses der Prüfungen des Parameters Ni primär auf Grundlage der Bundes-Bodenschutz- und Altlastenverordnung (1998; BBodSchV) vorgenommen und Überschreitungen der Prüfwerte der Nutzungsszenarien "Kinderspielflächen" und "Wohngebiete" festgestellt.

Eine derartige Bewertung weist allerdings lediglich einen <u>orientierenden</u> Charakter auf, da die Prüfwerte für den Wirkungspfad Boden – Mensch die Möglichkeit eines <u>Direktkontakts</u> (orale, dermale oder inhalative Schadstoffaufnahmen) berücksichtigen. Eine entsprechende Exposition des Materials der Tragschicht ist weder bei der aktuellen Nutzung (Versiegelung durch Fahrbahndecke), noch bei der Umsetzung des Bauvorhabens (gemäß den vorliegenden Informationen: vollständiger Rückbau der Verkehrsfläche der "Platanenallee" sowie externe Entsorgung des Materials der Tragschicht) gegeben. Somit liegen keine Gefährdungen der menschlichen Gesundheit vor.

Ergänzend ist an dieser Stelle darauf hinzuweisen, dass durch die vorhandene Versiegelung für das Material der Tragschicht auch der Wirkungspfad Boden – Sickerwasser – Grundwasser nicht relevant ist und bei Prüfungen eines Eluatansatzes beim Parameter Ni eine sehr deutliche Unterschreitung des entsprechenden Prüfwerts (14 μg/l gegenüber 50 μg/l) festzustellen war.

Im Schreiben des Kreises Unna vom 12.07.2018 wird das Material der Tragschicht als "kontaminiert" eingestuft. Erfahrungsgemäß werden bei einem Gebrauch des Begriffs Kontamination Gefährdungen von Schutzgütern (hier: menschliche Gesundheit und Grundwasser) abgeleitet. Entsprechende Gefährdungen (s. o.) liegen auf Grundlage der dargestellten Untersuchungsergebnisse im Bereich der "Platanenallee" aber weder aktuell, noch – bei Umsetzung der Planung - in Zukunft vor.

Basierend auf den oben angeführten Rahmenbedingungen und Untersuchungsergebnissen ist nach Auffassung des Unterzeichners auch eine Kennzeichnung "als Fläche, deren Böden erheblich mit umweltgefährdenden Stoffen belastet sind" (wörtliches Zitat aus dem Schreiben vom 12.07.2018) nicht nachvollziehbar.

21.02.2020 3/5

Im Bereich der "Platanenallee" erzielte abfalltechnische Ergebnisse

Weitgehend unberücksichtigt bleibt im Schreiben vom 12.07.2018 auch der abfalltechnische Aspekt, dass bei den auf Grundlage des zu berücksichtigenden Regelwerks der LAGA-Richtlinie (1997 / 2003 [Bauschutt]) zu bewertenden Chargen des Betons der Fahrbahn (MP I) sowie der Tragschicht (MP II) mit Ausnahme des Werts der elektrischen Leitfähigkeiten keine entsorgungstechnisch relevanten Konzentrationen festzustellen waren. Die bereits angeführten Cu- und Ni-Gehalte der Probe MP II lösen zwar im Feststoff Überschreitungen der Z 0-Kriterien aus, die für die abschließenden Einstufungen zu berücksichtigenden Eluatgehalte erwiesen sich allerdings als gering und unauffällig.

Die erhöhten Werte der elektrischen Leitfähigkeiten, die beim Material der Probe MP I <u>zunächst</u> eine Einstufung in die Einbauklasse > Z 2 sowie bei der Probe MP II <u>zunächst</u> eine Einstufung in die Einbauklasse Z 2 auslösen, wurden bereits im Gutachten [2] ausführlich erläutert.

Frisch gebrochener oder im Falle der Untersuchung des Jahres 2017 frisch aufgestemmter / zermahlener / durchbohrter Beton (hier: Fahrbahndecke sowie wesentlicher Bestandteil der Tragschicht) weist auf den Bruchflächen nicht durchkarbonisiertes Calciumhydroxid auf, das bei entsprechendem Material im Eluatansatz zu sehr deutlich erhöhten Werten der elektrischen Leitfähigkeiten führen kann. Durch atmosphärisches oder in Wasser gelöstes CO₂ tritt im Laufe der Zeit eine Karbonatisierung ein und die Werte der Leitfähigkeiten werden entsprechend reduziert.

Dementsprechend ist mit hinreichender Sicherheit davon auszugehen, dass bei der Entsorgung der beim Rückbau der "Platanenallee" anfallenden Chargen sehr deutlich niedrigere abfalltechnische Einstufungen (Einbauklasse Z 0 / Z 1.1) berücksichtigt werden können. Baubegleitende Prüfungen werden empfohlen. Auf Grundlage der dargestellten Erfahrungswerte sind keine relevant erhöhten Entsorgungsmehrkosten zu prognostizieren.

21.02.2020 4/5

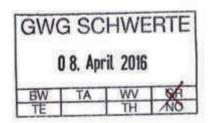
Fazit und Maßnahmeempfehlungen

Nach Auffassung des Unterzeichners sind die im Schreiben des Kreises Unna vom 12.07.2018 vorgenommenen Bewertungen in Teilen zu relativieren. Vor dem Hintergrund der aktuell noch gegebenen Nutzung der "Platanenallee" bzw. deren baulichem Zustand liegen keine Gefährdungen von Schutzgütern vor. Nach den vorliegenden Informationen ist ein vollständiger Rückbau der Fahrbahndecke sowie der Tragschicht geplant, wobei die Chargen einer schadlosen und ordnungsgemäßen externen Entsorgung zuzuführen sind.

Insofern besteht kein Erfordernis für eine Ausweisung von "Böden…" die "erheblich mit umweltgefährdenden Stoffen belastet sind".

In Hinsicht auf die abfalltechnischen Untersuchungsergebnisse ist darauf hinzuweisen, dass beim Rückbau auf Grundlage der vorliegenden Untersuchungsergebnisse schadstofffreie bis schadstoffarme Straßenaufbruchmaterialien anfallen werden. Im Zuge der Untersuchung des Jahres 2017 [2] ergaben sich zwar Hinweise auf erhöhte Werte der elektrischen Leitfähigkeiten. Erfahrungsgemäß ist allerdings vorauszusetzen, dass diese Werte nach einer durchgreifenden Karbonatisierung eine deutliche Abnahme aufweisen werden. Dementsprechend ist nicht von relevant erhöhten Entsorgungsmehrkosten auszugehen.

Der Unterzeichner ist zu einer ergänzenden Stellungnahme aufzufordern, sofern sich zum Inhalt dieser Ausführungen Fragen ergeben.


48161 Münster, den 21. Februar 2020

Dipl.-Geol. Dr. U. Heede

21.02.2020 5/5

Bericht

zur orientierenden

Baugrund- und Altlastenbewertung

Projekt:

ehem. Grabeland

Liegenschaft Deutsche Nickel GmbH

Rosenweg 15 in 58239 Schwerte

Auftraggeber:

DN Real Estate GmbH

Rosenweg 15 58239 Schwerte

Bearbeitung:

Dipl.-Geol. S. Al-Sibai

Dipl.-Geol. C. Schmitz-Hartmann

Projektnummer:

10-1728

Datum:

06. März 2015

Inhaltsverzeichnis

Inh	altsverzeid	chnis
1	Vorgang	g und Aufgabenstellung4
2	Informa	tionen zum Untersuchungsgelände4
975AC	2.1	Lage, Größe, Umgebung und Zustand4
	2.2	Informationen zum möglichen Bauvorhaben 5
	2.3	Informationen zu Altasten / Altlastenverdachtsflächen 5
	2.4	Informationen zu Kampfmittelbeeinträchtigungen 5
3	Untersu	chungsumfang, Bodenaufschlüsse, Probenahmen 6
4	Geologi	sche und hydrogeologische Verhältnisse7
	4.1	Geologie und lokale Befunde7
	4.2	Bodenmechanische Eigenschaften, Bodenkennwerte7
	4.3	Grundwasser 9
5	Baugru	ndbewertung 10
	5.1	Belastung des Untergrundes, Setzungsverhalten 10
	5.2	Wasserhaltung, Versickerung, Gebäudeabdichtung 10
	5.3	Erdbau, Sicherung von Baugruben11
6	Ergebni	isse der umwelttechnischen Untersuchungen12
	6.1	Auswahl der Proben für die chemischen Untersuchungen und
		Analysenumfang 12
	6.2	Altlasten- und abfalltechnische Bewertungsgrundlagen 15
	6.3	Untersuchungsergebnisse 16
	6.3.1	Untersuchungsergebnisse Boden - Gefährdungsabschätzungen 16
	6.3.2	Untersuchungsergebnisse Boden - Abfalltechnische Bewertungen 18
7	Hinweis	se und Schlusswort21
An	lagenverz	eichnis 23
An	lagon	24

Anhang I

- I Altlasten- und abfalltechnische Bewertungsgrundlagen
- I.1 Gefährdungsabschätzungen
- I.1.1 Boden Gefährdungsabschätzung
- I.1.2 Grundwasser Gefährdungsabschätzung
- I.2 Bewertungsgrundlagen Boden Entsorgung

1 Vorgang und Aufgabenstellung

Die **DN Real Estate GmbH**, Rosenweg 15 in **58239 Schwerte**, plant die Umstrukturierung eines Teils des Geländes der Deutsche Nickel GmbH in 58239 Schwerte. Im Zuge dieser Umstrukturierung ist die **Umnutzung des ehemaligen Grabelandes** nordwestlich des Firmengeländes vorgesehen (vgl. Lageplan, Anlage 1.2).

Die **GEOlogik Wilbers & Oeder GmbH**, Kerstingskamp 12 in **48159 Münster** wurde von der DN Real Estate GmbH in Schwerte beauftragt, eine erste, orientierende Erkundung des Untergrundes im Hinblick auf die Baugrundsituation und hinsichtlich möglicher Schadstoffbelastungen des Untergrundes vorzunehmen und die Ergebnisse in einem Bericht darzustellen.

2 Informationen zum Untersuchungsgelände

2.1 Lage, Größe, Umgebung und Zustand

Das Untersuchungsgelände des ehemaligen Grabelandes liegt nordwestlich des Firmengeländes der Deutsche Nickel GmbH im westlichen Stadtzentrum von Schwerte. Es wird im Norden durch den Rosenweg und im Osten durch eine ehem. Betriebszufahrt begrenzt. Im Süden des Untersuchungsgeländes schließen sich das Firmengelände sowie im Südwesten landwirtschaftlich genutzte Flächen an. In Richtung Westen befindet sich Wohnbebauung.

Das Gelände ist rd. 21.400 m² groß und Teil des Flurstücks 70 in der Flur 7 der Gemarkung Rosen. Die N-S-Erstreckung des Geländes beträgt etwa max. 220 m; die N-W-Erstreckung beträgt rd. 110 m.

Die Untersuchungsfläche wurde ehemals als sog. Grabeland kleingärtnerisch genutzt. Der Südosten der Fläche ist teilweise als Schotterfläche ausgebildet; hier befand sich ehemals eine Garagenzeile. Seit Aufgabe der Nutzung im Jahre 2006 liegt die Fläche brach und ist aktuell mit Büschen, Sträuchern und kleineren Bäumen bestanden.

Das Gelände steigt leicht in Richtung Rosenweg an, wobei der Höhenunterschied max. rd. 2 m beträgt. Der höchste Bohransatzpunkt (KRB 7) liegt bei rd. 130,01 m NN, der tiefste (KRB 11) im äußersten Süden bei rd. 128,06 m NN.

2.2 Informationen zum möglichen Bauvorhaben

Gemäß vorliegender Informationen (Stand 02/2015) soll die Untersuchungsfläche zukünftig für eine Wohnbebauung genutzt werden. Entlang des nördlichen Rosenweges und der im Osten verlaufenden Betriebszuwegung ist die Errichtung von mehrgeschossigen Mehrfamilienhäusern geplant. In Richtung Westen sehen die aktuellen Planungen die Errichtung von Einfamilienhäusern vor. Weitere Details zu Planung (Unterkellerungen, Lage von Garten-/Grünflächen, Ausführung/Lage von Parkplatz-/Verkehrsflächen etc.) liegen aktuell noch nicht vor.

2.3 Informationen zu Altasten / Altlastenverdachtsflächen

Informationen aus dem Altlastenkataster liegen den Unterzeichnern aktuell nicht vor.

Anzumerken ist jedoch, dass es aufgrund von Produktionsprozessen innerhalb des Betriebsgeländes der Dt. Nickel in Schwerte im Umfeld der Emissionsquelle u.a. zu erhöhten Nickelkonzentrationen im oberflächennahen Untergrund kommt. Nähere Informationen zu diesem Thema sind der Website des Kreises Unna zu entnehmen (http://www.kreis-unna.de/hauptnavigation/kreis-region/politik-verwaltung/kreisverwaltung/natur-und-umwelt/gewerblicher-umweltschutz-und-abfallwirtschaft/nickel-in-schwerte.html)

2.4 Informationen zu Kampfmittelbeeinträchtigungen

Gem. Schreiben der Stadt Schwerte vom 15.12.2014 (vgl. Anlage 5) liegt die Fläche in einem Bombenabwurfgebiet, jedoch ohne unmittelbare Kampfmittelgefährdung. Wegen erkennbarer Kriegsbeeinflussung kann eine derzeit nicht erkennbare Kampfmittelbelastung nicht gänzlich ausgeschlossen werden.

Gem. Hinweis der Stadt Schwerte hat "vor jedem weiteren Bodeneingriff eine Kontaktaufnahme des Tiefbauunternehmens mit der Ordnungsbehörde zu erfolgen". Sofern

ein Tiefbauunternehmen vor Ort aktiv werden sollte, ist dieser entsprechend im Vorfeld darüber zu informieren.

3 Untersuchungsumfang, Bodenaufschlüsse, Probenahmen

Die geotechnischen Arbeiten zur Erkundung des Untergrundes wurden am 11./12.02.2015 vorgenommen. Hierbei wurden insg. 11 Kleinrammbohrungen (KRB 1 – KRB 11) bis jew. 2,0 m bzw. bis 4,0 m mit insg. 29,3 Bohrmeter abgeteuft. Bohrhindernisse wurden nicht festgestellt.

Am Ansatzpunkt der KRB 9 im mittleren Teil des Untersuchungsgeländes wurde 1 Grundwasserpegel als 1¼"-Rammpegel (RP 1) eingerichtet. Die Ausbauskizze des Pegels ist der Anlage 2 zu entnehmen.

Die Ansatzpunkte der Bodenaufschlüsse wurden nach Lage und Höhe eingemessen (s. Lageplan, Anlage 1.2). Als Bezugsniveau für die Bodenaufschlüsse wurde ein Kanaldeckel auf dem Rosenweg (SW-Ecke von Haus-Nr. 74) mit einer absoluten Höhe von 129,67 mNN gewählt (s. Höhennivellement, Anlage 3).

Aus den Bohrungen wurden insg. **70 Bodenproben** bis zur jeweiligen max. Aufschlusstiefe entnommen und in Glasbehälter überführt. Zur Betrachtung des Wirkungspfades Boden – Mensch wurde der oberflächennahe Untergrund gemäß den Vorgaben der BBodSchV horizontiert (0,0 – 0,1 m, 0,1 – 0,35 m unter Geländeoberkante [GOK]) beprobt.

Die Bodenproben wurden im bodenmechanischen Labor einer genauen Bodenansprache unterzogen und es erfolgte die Auswahl der Proben für die chemischen Analysen.

4 Geologische und hydrogeologische Verhältnisse

4.1 Geologie und lokale Befunde

Das Untersuchungsgebiet liegt am Nordrand des Rheinischen Schiefergebirges. Nach der Geologischen Karte von Nordrhein-Westfalen M. 1: 100.000, Blatt C 4710 Dortmund, befindet sich das Planungsgebiet im Übergangsbereich fluviatiler Ablagerungen und äolischer Sedimente, die über den Gesteinen des karbonischen Grundgebirges liegen. Letzteres besteht aus Ton- und Schluffsteinen des Oberkarbons. Die überlagernden Schichten sind feinsandig-schluffig ausgeprägt (Löß).

Nach den Ergebnissen der Bohrungen ist auf dem Untersuchungsgelände folgende generelle Schichtenfolge anzutreffen (vgl. Schichtenprofile, Anlagen 2.1 ff):

bis ca. 0,3 m unter GOK:

Mutterboden

Sand, schluffig, humos, Wurzeln, braun-schwarz ge-

färbt, kalkfrei, erdfeucht.

bis ca. 1,5 / 2,6 m unter GOK:

Löß

Schluff, schwach feinsandig, braun gefärbt, kalkfrei, feucht bis sehr feucht. Vorwiegend steife Konsistenz. Durchlässigkeitsbeiwert kf ca. 10⁻⁶ bis 10⁻⁷ m/s.

bis zur Endteufe:

Tonstein, verwittert

Ton, schluffig, schwach feinsandig, Gesteinsbruch, blättrig brechend, kalkfrei, braun gefärbt. Meist nass,

steif bis halbfest, zur Tiefe fester werdend.

In KRB 1 wurde abweichend von den anderen Kleinrammbohrungen bis rd. 1,0 m unter GOK aufgefülltes Material erbohrt, welches sich hauptsächlich aus Schotter, Sand und Ziegelbruch mit schluffigen Anteilen zusammensetzt.

4.2 Bodenmechanische Eigenschaften, Bodenkennwerte

Die durch die Bohrsondierungen erschlossenen Schichten sind nach VOB gemäß DIN 18 196, DIN 18 300 und DIN 18 301 sowie ZTVE-StB 09 (zusätzliche Technische Vertragsbedingungen und Richtlinien für Erdarbeiten im Straßenbau) wie folgt einzustufen:

	Klass	ifikation der Boden-	und Felsklassen g	jemäß
Schichtfolge	DIN 18196	DIN 18300"	DIN 18301	ZTVE*** (Frostempfind- lichkeit)
Schicht 1 Mutterboden	ОН	1	BN 2	F 2
Schicht 2 Löss	UL	4	BB 2	F 3
Schicht 3 Tonstein, verwittert	Tst, TM	4 bis 6	FV 1, FV 2, BB 2- BB 3	F3

Tabelle 1: Boden- und Felsklassen

* Angaben beziehen sich auf die in den Aufschlüssen angetroffene Zusammensetzung und Konsistenz,

■ F 1: nicht frostempfindlich F2: gering bis mittel frostempfindlich F 3: sehr frostempfindlich

Für erdstatische Berechnungen können die nachfolgend aufgeführten, charakteristischen Erfahrungswerte der Bodenkenngrößen verwendet werden. Die Werte gelten für die beschriebenen Hauptbodenschichten im ungestörten Lagerungsverband, d.h. ohne z.B. baubedingte Auflockerungen oder Vernässungen.

Schicht	Feucht- wichte	Wichte unter Auftrieb	Reibungs- winkel	Kohäsion	Steifemodul
	γ _k [kN/m³]	γ'k [kN/m³]	φ' _k [°]	c' _k [kN/m²]	E _{s,k} [MN/m ²]
Schicht 1 Mutterboden	17-19 i, M. 18	8-10 i. M. 9	27,5-32,5 i. M. 30	3	200
Schicht 2: Löss	19-20 i. M. 19,5	9-10 i. M. 9,5	25-30 i. M. 27,5	0-4 i. M. 2	11 - 15 i. M. 13
Schicht 3: Tonstein, verwittert	20-21 i. M. 20,5	10-11 i. M. 10,5	25-30 i, M. 27,5	10-15 i. M. 12,5	30-60 i. M. 45

Tabelle 2: charakteristische Bodenkennwerte (beruhend auf Erfahrungswerten)

4.3 Grundwasser

Der Grundwasserspiegel wurde bei den Außenarbeiten am 11. und 12.02.2015 mittels Kabellichtlot bzw. Klopfnässe (indirekter Hinweis) in einer Tiefe zwischen rd. 1,2 m und 1,7 unter GOK in dem jeweiligen Bohrloch festgestellt. Messungen in der zu einer temporären Grundwasserstelle ausgebauten KRB 9 bestätigen diese Werte.

Eine exakte Angabe zu den Grundwasserständen ist im Bereich des Baugeländes aufgrund jahreszeitlich bedingter, natürlicher Schwankungen nur mithilfe von Langzeitmessungen in zuvor eingerichteten Grundwassermessstellen möglich und kann folglich im Rahmen dieser Baugrunduntersuchung nicht gemacht werden.

Nach vorliegenden Informationen aus dem Umweltportal des Landes Nordrhein-Westfalen ELWAS-IMS (http://www.elwasims.nrw.de, 26.02.2015) liegt das Untersuchungsgelände innerhalb der Wasserschutzzone III (s. folgender Screenshot).

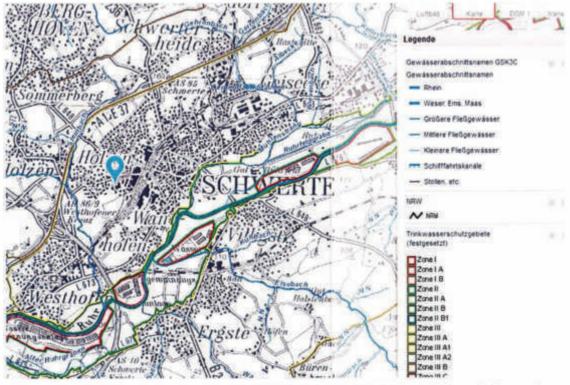


Bild 01: Screenshot aus dem Umweltportal ELWAS-IMS vom 26.02.2015 mit Kennzeichnung des Untersuchungsgeländes (= blauer Kreis).

5 Baugrundbewertung

5.1 Belastung des Untergrundes, Setzungsverhalten

Geht man von einer Oberkante Fertigfußboden Erdgeschoss (OKFF EG) aus, die in etwa auf dem derzeitigen Geländeniveau liegt, und geht man zudem von einer Einbindung der unterkellerten Ein- und Mehrfamilienhäuser von rd. 3,0 m unter Gelände aus, wird die Unterkante einer üblich ausgeführten Gründungsplatte in allen untersuchten Bereichen in den Verwitterungshorizont des Tonsteins einbinden. Die Böden im Bereich der Gründungssohlen sind allgemein tragfähig. Zur Stabilisierung und zum Schutz des Erdplanums wird jedoch empfohlen, eine rd. 0,3 m starke Schottertragschicht aus einem geeigneten Material herzustellen.

Unter den Annahme, dass max. dreigeschossige Mehrfamilienhäuser (mittlere flächige Sohlnormalspannungen 70 kN/m²) errichtet werden, ergeben überschlägige Setzungsberechnungen an Plattenausschnitten von 10 x 10 m maximale Setzungen von rd. $S_g < 1$ cm.

5.2 Wasserhaltung, Versickerung, Gebäudeabdichtung

Ausgehend von einer Unterkante der Schottertragschicht bei rd. 3,3 m unter GOK, wird der Grundwasserstand nach den derzeitigen Erkenntnissen bis zu 2,0 m oberhalb der Aushubebene anstehen. Es ist eine geschlossene Wasserhaltung erforderlich (z. B. Vakuumfilterlanzen), eine geeignete Methode ist vom Fachunternehmer vorzuschlagen. Es ist dafür Sorge zu tragen, dass bei einer Grundwasserabsenkung benachbarte Gebäude nicht beeinträchtigt werden.

Das Kellerbauwerk ist gegen von außen drückendes Wasser abzudichten. Es ist entsprechend eine Gebäudeabdichtung gem. DIN 18195, T6, oder alternativ die Ausführung eines wasserundurchlässigen Kellers nach WU-Richtlinie (z. B. "Weiße Wanne") durchzuführen. Des Weiteren sind Kellerlichtschächte gegen den Eintrag von Grundwasser abzudichten.

Für die Versickerung nicht schädlich verunreinigten Niederschlagwassers ist das Regelwerk der ATV-DVWK-A 138 maßgeblich und zu beachten. Auf dem Grundstück ist die Ver-

sickerung aufgrund der anstehenden gering durchlässigen Böden der Schicht 2 und 3 nicht möglich. Es wird eine Ableitung in das öffentliche Kanalnetz empfohlen.

5.3 Erdbau, Sicherung von Baugruben

Bei Beachtung der Grundstücksgrenzen sowie bei Einhaltung eines betretbaren Arbeitsraumes ist bei der erwarteten Baugrubentiefe von bis zu rd. 3,0 m und den anstehenden Böden ausreichend Platz für eine regelkonforme, freie Böschung unter einem Böschungswinkel von β < 45° vorhanden. Zum Schutz vor Austrocknen oder Ausspülungen sind die Böschungen mit Folien abzudecken.

Es ist zu prüfen, ob durch die Grundwasserabsenkung ein Verbau um die Baugruben hergestellt werden muss.

Baufahrzeuge müssen den Mindestabstand nach DIN 4124 von der Baugruben einhalten (Fahrzeuge bis 12 t mind. 1 m Abstand, Fahrzeuge über 12 t mind. 2 m Abstand).

6 Ergebnisse der umwelttechnischen Untersuchungen

6.1 Auswahl der Proben für die chemischen Untersuchungen und Analysenumfang

Im Rahmen von an den Bodenproben vorgenommenen organoleptischen (d. h. geruchlichen und optischen) Prüfungen waren keine per Geruch wahrnehmbaren Auffälligkeiten (z. B. Kraftstoff-, Teer-, Lösemittelgeruch etc.) feststellbar.

Die optisch wahrzunehmenden Auffälligkeiten beschränkten sich auf die in den oberflächennahen Proben (0,0 – 1,0 m unter GOK) der <u>KRB 1</u> vorhandenen mineralischen Fremdbestandteile (<u>Schotter, Beton-/Ziegelbruch, vereinzelt Kohle</u>). Hinweise auf Belastungen mit spezifischen Schadstoffparametern lagen nach den Prüfungen der Bodeneinzelproben somit nicht vor und entsprechende chemische Untersuchungen waren nicht erforderlich.

Im Rahmen der orientierenden Schadstoffuntersuchungen wurden unter Berücksichtigung der erschlossenen Schichtfolgen (vgl. Kapitel 4) sowie der Vorgaben der BBodSchV folgende (teil-)flächenbezogenen Bodenmischproben zusammengestellt

- MP 01:
 Oberflächennah anstehende humose Oberböden Nordteil ehem. Grabeland, KRB 4 – KRB 9 maximales Entnahmeintervall 0,0 – 0,1 m u. GOK
- MP 02:
 Oberflächennah anstehende humose Oberböden Südteil ehem. Grabeland, KRB 2 + KRB 3 u. KRB 10 + KRB 11 maximales Entnahmeintervall 0,0 – 0,1 m u. GOK
- MP 03: Oberflächennah anstehende humose Oberböden Nordteil ehem. Grabeland, KRB 4 – KRB 9 maximales Entnahmeintervall 0,1 – 0,3 m u. GOK
- MP 04:
 Oberflächennah anstehende humose Oberböden
 Südteil ehem. Grabeland, KRB 2 + KRB 3 u. KRB 10 + KRB 11
 maximales Entnahmeintervall 0,1 0,3 m u. GOK

- MP 05: geogene Böden (Löß) Nordteil ehem. Grabeland, KRB 4 – KRB 9 maximales Entnahmeintervall 0,3 – 1,0 m u. GOK
- MP 06: geogene Böden (Löß)
 <u>Süd</u>teil ehem. Grabeland, KRB 2 + KRB 3 u. KRB 10 + KRB 11 maximales Entnahmeintervall 0,3 – 1,0 m u. GOK

und dem Labor zur Bearbeitung übergeben.

Die Zusammenstellung der Mischproben (u.a. Horizontierung gem. BBodSchV) erfolgte in erster Linie zur Klärung von boden-/grundwasserschutzrechtlichen Fragestellungen.

Folgende Bodeneinzelproben wurden bei den Zusammenstellungen der Mischproben MP 01 bis MP 06 berücksichtigt:

Mischprobe (MP)	KRB / Probe	Teufe [m u. GOK]
MP 01 humose Oberböden <u>Nord</u> teil ehem, Grabeland KRB 4 – KRB 9	4/1	0,0 - 0,1
	5/1	0,0 - 0,1
	6/1	0,0-0,1
	7/1	0,0 - 0,1
	8/1	0,0-0,1
	9/1	0,0 - 0,1

Mischprobe (MP)	KRB / Probe	Teufe [m u. GOK]
MP 02	2/1	0,0-0,1
humose Oberböden <u>Süd</u> teil ehem. Grabeland	3/1	0,0-0,1
	10/1	0,0 - 0,1
	11/1	0,0 - 0,1

Mischprobe (MP)	KRB / Probe	Teufe [m u. GOK]
MP 03 humose Oberböden <u>Nord</u> teil ehem, Grabeland KRB 4 – KRB 9	4/2	0,1-0,3
	5/2	0,1-0,3
	6/2	0,1-0,3
	7/2	0,1-0,3
	8/2	0,1-0,3
	9/2	0,1-0,3

KRB / Probe	Teufe [m u. GOK]
2/2	0,1-0,3
3/2	0,1-0,3
10/2	0,1 - 0,3
11/2	0,1-0,3
	2/2 3/2 10/2

Fortsetzung der Tabelle: s. Folgeseite.

Mischprobe (MP)	KRB / Probe	Teufe [m u. GOK]
MP 05 geogene Böden (Löß) Nordteil ehem. Grabeland KRB 4 – KRB 9	4/3	0,3 - 0,5
	4/4	0,5 - 1,0
	5/3	0,3-0,5
	5/4	0,5 - 1,0
	6/3	0,3 - 0,5
	6/4	0,5 - 1,0
	7/3	0,3-0,5
	7/4	0,5 - 1,0
	8/3	0,3 - 0,5
	8/4	0,5 - 1,0
	9/3	0,3 - 0,5
	9/4	0,5 - 1,0

Mischprobe (MP)	KRB / Probe	Teufe [m u. GOK]
MP 06 geogene Böden (Löß) <u>Süd</u> teil ehem. Grabeland	2/3	0,3 - 0,5
	2/4	0,5 - 1,0
	3/3	0,3 - 0,5
	3/4	0,5 - 1,0
	10/3	0,3-0,5
	10/4	0,5 - 1,0
	11/3	0,3-0,5
	11/4	0,5 - 1,0

Tabelle 1: Zusammensetzung der Bodenmischproben.

Die Mischproben MP 01 bis MP 06 (humose Oberböden bzw. Böden des geogenen Untergrunds) wurden gem. dem Parameterumfang der TR Boden (vgl. Anhang I, Kapitel 2) untersucht. In diesem Regelwerk wurden für die laboranalytischen Arbeiten folgende Untersuchungsparameter berücksichtigt:

im Feststoff:

- Kohlenwasserstoff-Index (KW)
- Leichtflüchtige aromatische Kohlenwasserstoffe (BTX)
- Polycyclische aromatische Kohlenwasserstoffe (PAK), 16 Einzelsubstanzen n. EPA
- Extrahierbare organischen Halogenverbindungen (EOX)
- Metalle/Schwermetalle
 - = Arsen (As), Blei (Pb), Cadmium (Cd), Chrom ges. (Cr), Kupfer (Cu), Nickel (Ni), Quecksilber (Hg), Zink (Zn) und Thallium (Tl)
- Cyanide ges. (CN)
- Leichtflüchtige halogenierte Kohlenwasserstoffe (LHKW)
- Polychlorierte Biphenyle (PCB)
- Gesamtgehalt des Kohlenstoffs (TOC Total Organic Carbon)

im Eluat:

- Metalle/Schwermetalle
 - = Arsen (As), Blei (Pb), Cadmium (Cd), Chrom ges. (Cr), Kupfer (Cu), Nickel (Ni), Quecksilber (Hg) und Zink (Zn)
- · pH-Wert und elektrische Leitfähigkeit
- Sulfat
- Chlorid
- Cyanide ges. (CN)
- Phenolindex

Die chemischen Untersuchungen der Bodenmischproben wurden von der Laboratorien Dr. Döring GmbH, Haferwende 12 in 28357 Bremen (DAkkS-Registrier-nummer: D-PL-13462-01-00) vorgenommen. Bei den chemischen Untersuchungen nicht verbrauchtes Probenmaterial wird zwei Monate aufbewahrt und dann, falls vom Auftraggeber nicht anders bestimmt, einer geregelten Verwertung / Beseitigung zugeführt.

Die Ergebnisse der chemischen Untersuchungen sind dem Gutachten als Anlage 4.1 (Bodenmischproben) beigefügt.

6.2 Altlasten- und abfalltechnische Bewertungsgrundlagen

Um die Lesbarkeit dieses Gutachtens zu erleichtern, wird an dieser Stelle auf eine Wiedergabe von altlasten- und abfalltechnischen Bewertungsgrundlagen verzichtet.

In Form des **Anhangs I** werden diese Bewertungsgrundlagen dokumentiert. Der Anhang I.1 enthält Bewertungskriterien für **Gefährdungsabschätzungen**, die auf Grundlage der Ergebnisse der durchgeführten Untersuchungen des Umweltmediums Boden in Hinsicht auf die für die Untersuchungsfläche vorrangig relevanten Wirkungspfade Boden – Mensch, Boden – Nutzpflanze und Boden – Sickerwasser – Grundwasser vorgenommen werden können.

Im Anhang I.2 werden die Kriterien der **abfalltechnischen Einstufungen** der untersuchten Böden wiedergegeben.

6.3 Untersuchungsergebnisse

Die Ergebnisse der an den Bodenmischproben vorgenommenen chemischen Untersuchungen werden in tabellarischer Form in der Anlage 4.2 wiedergegeben. Durch farbliche Hinterlegungen werden in dieser Tabelle Bewertungen vorgenommen, wobei in den linken Spaltenhälften Bewertungen im Sinne von Gefährdungsabschätzungen (BBodSchV und LAWA-Liste [vgl. Anhang I.1]) bzw. in den rechten Spaltenhälften abfalltechnische Einstufungen (TR Boden [vgl. Anhang I.2]) vorgenommen werden.

6.3.1 Untersuchungsergebnisse Boden - Gefährdungsabschätzungen

Die Untersuchung der humosen Oberböden bzw. der Mischproben MP 01 bis MP 04 erbrachte bei den organischen Schadstoffparametern keinen Nachweis von Gehalten oder lediglich die Nachweise von geringen, nicht umweltrelevanten Konzentrationen. Dies gilt vorrangig auch für die Summenkonzentrationen der PAK n. EPA, die mit Gehalten von 0,95 mg/kg (MP 03) bis max. 1,79 mg/kg (MP 02) nachgewiesen wurden. Vergleichend wird an dieser Stelle auf die Spanne des Prüfwerts der LAWA-Liste (Definition s. Anhang I.1.1) hingewiesen, die mit Konzentrationen von 2 – 10 mg/kg festgelegt wurde.

Auch die Gehalte der anorganischen Schadstoffparameter erwiesen sich generell als sehr gering und unauffällig.

Die aufgrund der möglichen höherwertigen Nachnutzung heranzuziehenden **Prüfwerte der BBodSchV** (Wirkungspfad Boden – Mensch) für Wohngebiete sowie die noch restriktiveren Kriterien für Kinderspielflächen werden jeweils mehr als deutlich unterschritten. Auch die **Prüfwerte für Wohngärten gem. Altlastenerlass NRW** (Wirkungspfad Boden - Mensch und Boden - Nutzpflanze) werden unterschritten.

Die Prüfberichte des Labors liegen diesem Gutachten in Form der Anlage 4.1 (Bodenmischproben) bei.

Bei einer Bewertungen der Ergebnisse der Mischproben MP 01 und MP 03 (= Nordteil des Grabelandes) gemäß den Vorsorgewerten der BBodSchV (Anhang I.1.1) wurden bei einem angenommenen Humusgehalt von weniger als 8 % bei den relevanten Parame-

tern PCB, Benzo(a)pyren sowie der Summe der PAK n. EPA jeweils Unterschreitungen der Vorsorgewerte nachgewiesen. Auch bei den anorganischen Parametern, bei denen aufgrund der Sondierergebnisse (vgl. Kapitel 4) die Kriterien der Bodenart Lehm/Schluff zu berücksichtigen sind, lagen deutliche Unterschreitungen der jeweils relevanten Vorsorgewerte vor.

Bei den Mischproben MP 02 und MP 04 (= Südteil des Grabelandes) wurden bei den anorganischen Parametern Cu und Zn leichte Überschreitungen der jeweiligen Vorsorgewerte (40 mg/kg bzw. 150 mg/kg; MP 2: 51 mg/kg bzw. 160 mg/kg sowie MP 4: 53 mg/kg bzw. 160 mg/kg) nachgewiesen. Der Parameter Benzo(a)pyren überschreitet bei der Mischprobe MP 02 den entsprechenden Vorsorgewert (0,3 mg/kg; MP 02: 0,8 mg/kg).

Die vorliegenden Untersuchungsergebnisse sind dahingehend zusammenzufassen, dass Hinweise auf schädliche Bodenveränderungen oder Altlasten nicht vorliegen. In Hinsicht auf die Wirkungspfade Boden – Mensch und Boden - Nutzpflanze liegen im Falle einer zukünftig höherwertigen Nachnutzung keine Einschränkungen vor. Die im Bereich der Untersuchungsfläche anstehenden humosen Oberböden können auf Grundlage der dargestellten Untersuchungsergebnisse demzufolge uneingeschränkt in Form von Nutzgärten oder Kinderspielflächen genutzt werden.

Sofern die auf der Untersuchungsfläche anstehenden humosen Oberböden jedoch an anderer Stelle (d.h. außerhalb der Untersuchungsfläche) in eine durchwurzelbare Bodenschicht eingebaut werden sollen oder mit diesen Böden die Herstellung einer durchwurzelbare Bodenschicht erfolgen soll, sind die Hinweise in Kap. 6.3.2 zu beachten.

Die Böden des geogenen Untergrunds unterhalb der humosen Oberböden (= Mischproben MP 05 und MP 06) weisen keine Hinweise auf nennenswert erhöhte Schadstoffbelastungen auf.

Nur der Vollständigkeit halber ist abschließend darauf hinzuweisen, dass aufgrund der im Feststoff und v. a. auch im Eluat nachgewiesenen, sehr geringen oder nicht ausgeformten Schadstoffgehalte der Wirkungspfad Boden – Sickerwasser – Grundwasser ebenfalls keine Relevanz aufweist.

Sicherungs- oder Sanierungserfordernisse sind somit nicht gegeben und bei Umsetzung der geplanten Nutzung (Wohnbebauungen, Kinderspielflächen, Nutzgärten) sind auf Grundlage der vorliegenden Untersuchungsergebnisse gesunde Lebens- und Wohnverhältnisse gewährleistet.

6.3.2 Untersuchungsergebnisse Boden - Abfalltechnische Bewertungen

Die Analysenergebnisse der untersuchten Bodenmischproben ermöglichen eine Bewertung der Böden hinsichtlich einer "normalen bis eingeschränkten" Verwertung (interner Wiedereinbau innerhalb der Untersuchungsfläche oder externe Ablagerung auf Boden-/ Bauschuttdeponien, Lärmschutzwällen etc.) und einer "gesonderten" Verwertung / Entsorgung" (Bodenreinigungsanlagen, Abfalldeponien etc.), sofern diese bei Erdarbeiten ausgehoben werden und abfallrechtlich zu bewerten sind.

Auf Grundlage der Kriterien der TR Boden (2004), die in detaillierter Form im Anhang I.2 wiedergegeben und erläutert werden, sind folgende abfalltechnischen Einstufungen vorzunehmen:

Proben der humosen Oberböden:

MP 01:

Oberflächennah anstehende humose Oberböden Nordteil ehem. Grabeland, KRB 4 – KRB 9 maximales Entnahmeintervall 0,0 – 0,1 m u. GOK

orientierende Einstufung: "Einbauklasse Z 2"
relevanter Parameter: TOC (3,5 Masse-%) im Feststoff
alle anderen Parameter erfüllen im Feststoff und im Eluat die Kriterien der Einbauklasse Z 0

MP 02:

Oberflächennah anstehende humose Oberböden Südteil ehem. Grabeland, KRB 2 + KRB 3 u. KRB 10 + KRB 11 maximales Entnahmeintervall 0,0 – 0,1 m u. GOK

orientierende Einstufung: "Einbauklasse Z 2" relevanter Parameter: TOC (2,1 Masse-%) im Feststoff ansonsten Einbauklasse Z 1 wg. PAK n. EPA

MP 03:

Oberflächennah anstehende humose Oberböden Nordteil ehem. Grabeland, KRB 4 – KRB 9 maximales Entnahmeintervall 0,1 – 0,3 m u. GOK

orientierende Einstufung: "Einbauklasse Z 1" relevanter Parameter: TOC (1,3 Masse-%) im Feststoff alle anderen Parameter erfüllen im Feststoff und im Eluat die Kriterien der Einbauklasse Z 0

MP 04:

Oberflächennah anstehende humose Oberböden Südteil ehem. Grabeland, KRB 2 + KRB 3 u. KRB 10 + KRB 11 maximales Entnahmeintervall 0,1 – 0,3 m u. GOK

orientierende Einstufung: "Einbauklasse Z 2"
relevanter Parameter: TOC (1,9 Masse-%) im Feststoff
ansonsten Einbauklasse Z 0* wg. Cu + Zn im Feststoff

An dieser Stelle ist darauf hinzuweisen, dass eine auf Grundlage der TR Boden erfolgende Bewertung der Ergebnisse der humosen Oberböden lediglich einen orientierenden Charakter aufweist. Infolge der bei derartigen Böden zwangsläufig gegebenen Organik-Anteile mit entsprechenden Auswirkungen auf die TOC-Gehalte sind – auch nach den Vorgaben der TR Boden - die Vorsorgewerte der BBodSchV (vgl. Anhangl.l.1) maßgeblich bei der Bewertung.

Wie im Kapitel 6.3.1 bereits erläutert wurde, liegen bei den Mischproben MP 01 und MP 03 (= Nordteil des Grabelandes) sowohl für die organischen als auch die anorganischen Parametern Unterschreitungen der Vorsorgewerte vor. Bei den Mischproben MP 02 und MP 04 (= Südteil des Grabelandes) wurden jedoch bei den anorganischen Parametern Cu und Zn leichte Überschreitungen der jeweiligen Vorsorgewerte (40 mg/kg bzw. 150 mg/kg; MP 2: 51 mg/kg bzw. 160 mg/kg sowie MP 4: 53 mg/kg bzw. 160 mg/kg) nachgewiesen. Der Parameter Benzo(a)pyren überschreitet bei der Mischprobe MP 02 den entsprechenden Vorsorgewert (0,3 mg/kg; MP 02: 0,8 mg/kg).

Dementsprechend können die humosen Oberböden der Untersuchungsfläche vor Ort zur Herstellung von Hausgärten oder Grünflächen genutzt oder abgeschobene Oberböden entsprechend wieder eingebaut werden.

Sollte jedoch eine externe Verwertung der humosen Oberböden zur Herstellung einer durchwurzelbaren Bodenschicht oder zum Einbau in eine entsprechende Bodenschicht geplant werden, sind auf Grund der in Teilbereichen bzw. für Teilchargen festgestellten Überschreitungen von Vorsorgewerten Abstimmungen mit den Fachbehörden in Hinsicht auf den vorgesehenen Verwertungsweg zu führen. Nach aktuellem Kenntnisstand (= orientierende Erkundung) führen die bereichsweise geringfügig erhöhten Cu-, Zn- und Benzo(a)pyren-Gehalte bei entsprechenden Nutzungsformen (z. B. Grünflächen, Park- und Freizeitanlagen etc.) zu einer nur eingeschränkten Verwertung außerhalb des Baufelds.

Proben der geogenen Böden (Löß):

MP 05:

geogene Böden (Löß)

Nordteil ehem. Grabeland, KRB 4 – KRB 9
maximales Entnahmeintervall 0,5 – 1,0 m u. GOK

Einstufung: Einbauklasse Z 0

MP 06:

geogene Böden (Löß)
Südteil ehem. Grabeland, KRB 2 + KRB 3 u. KRB 10 + KRB 11
maximales Entnahmeintervall 0,5 – 1,0 m u. GOK

Einstufung: Einbauklasse Z 0

Bei den geogenen Böden (Löß), die in Form der Proben MP 05 und MP 06 erfasst wurden, liegen generell keine Einschränkungen für externe Verwertungen vor bzw. werden die für die Einbauklasse Z 0 festgelegten Vorgaben generell erfüllt.

Ein Wiedereinbau der geogenen Böden auf der Untersuchungsfläche (z. B. in Form von Arbeitsraumverfüllungen) ist ohne umwelttechnische Einschränkungen möglich. Bodenmechanische Aspekte bleiben an dieser Stelle unberücksichtigt.

Eine abschließende Klassifikation der unterschiedlichen Chargen ist bauvorbereitend (z.B. in Form von Rasterfeldbeprobungen / Baggerschürfen) oder baubegleitend (z.B. Beprobung von Haufwerken) durchzuführen. Unter Berücksichtigung von Vorgaben der zuständigen Fachbehörden (Analytikumfang ist den Aushubkubaturen anzupassen etc.) sind dann für die unterschiedlichen Aushubchargen der Projektfläche abfallrechtliche Deklara-

tionen vorzunehmen, die erfahrungsgemäß innerhalb einer gewissen Bandbreite von den vorliegenden Ergebnissen der <u>orientierenden</u> abfalltechnischen Untersuchung abweichen können. Im Zuge dieser deklarationsanalytischen Untersuchungen sind bei Überschreitungen der Kriterien der Einbauklasse Z 2 zusätzlich die Kriterien der Deponieklassen der "Verordnung zur Vereinfachung des Deponierechts" (DepV vom 16.07.2009) zu prüfen, wobei für derart erhöhte Belastungen im Zuge der durchgeführten Untersuchungen keine Hinweise feststellbar waren.

Sollten sich im Rahmen der geplanten Maßnahmen des Erdbaus allerdings Hinweise auf gefährdungsrelevant erhöhte Schadstoffbelastungen ergeben, sind die entsprechenden Chargen zu separieren. Die zuständige Fachbehörde ist entsprechend in Kenntnis zu setzen und ein Fachgutachter heranzuziehen. Bei den Arbeiten des Erd- / Tiefbaus sind die einschlägigen Vorschriften des Arbeits- und Gesundheitsschutzes zu berücksichtigen.

7 Hinweise und Schlusswort

Die bislang durchgeführten Untersuchungen haben ausschließlich orientierenden Charakter. Für die Ausarbeitung belastbarer Baugrund- und Altlastengutachten sind weitere Untersuchungen erforderlich.

Wir empfehlen u.a. weitere Abstimmungen, Prüfungen und Untersuchungen wie folgt:

- Abstimmungen mit den zuständigen Behörden zur Thematik "höherwertige Nutzung" (u.a. Untersuchungskonzept).
- Weiterführende Baugrund- und Altlastenbegutachtung; Verdichtung des Aufschlussrasters; Durchführung von Rammsondierungen, Herstellen von Grundwassermessstellen.

Die Gutachter sind zu einer ergänzenden Stellungnahme aufzufordern, sofern sich Fragen ergeben, die in dem vorliegenden Bericht nicht oder abweichend erörtert wurden.

48159 Münster, den 06. März 2015

GEOlogik
Wilbers & Oeder GmbH
Umwelt-Ingenieur- und Hydrogeologie
Planung / Epratung / Gutachten
Kerstingskamp 12 48159 Münster
Telefop 92 51 20 12 7-0
Telefax: 02 51 / 20 12 7-29

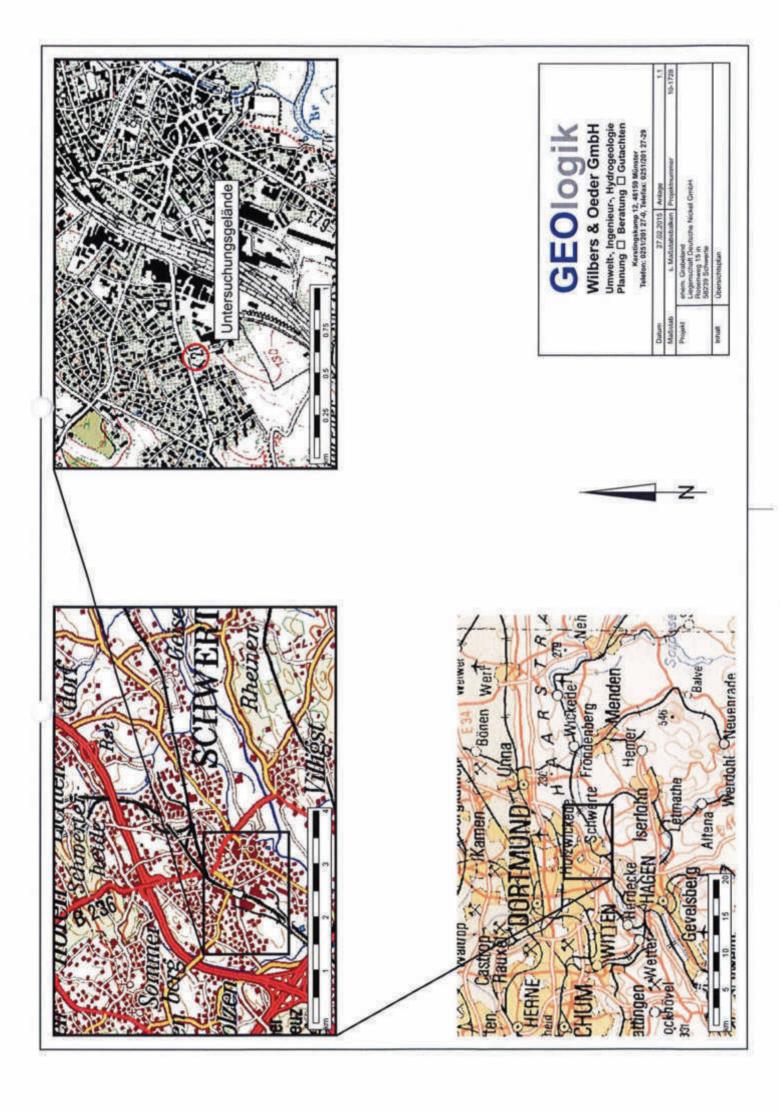
GEOlogik
Wilbers & Oeder GmbH
Umwett Parnieur und Hidropeliogier,
Plahung Beratung Getychten
Kerstingskamp 12 48159 Munster
Telefon: 02 51 / 20 12 7-0
Telefax: 02 51 / 20 12 7-29

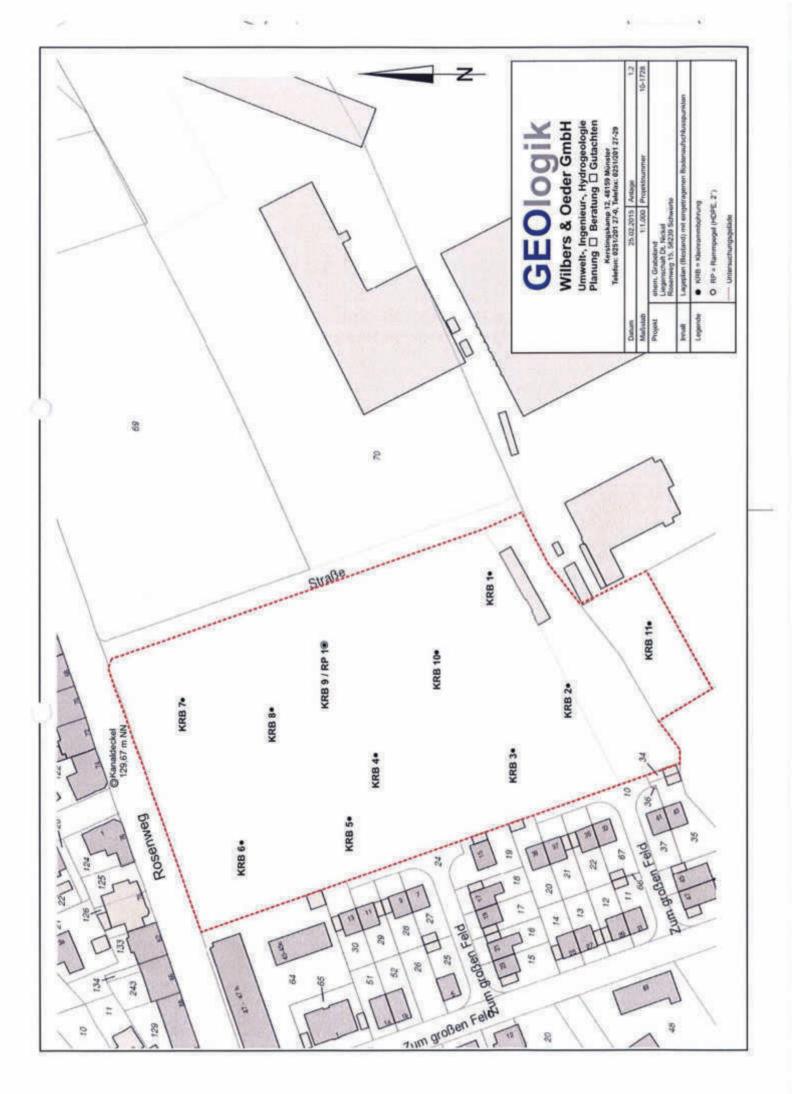
Dipl.-Geol. S. Al-Sibai

Dipl.-Geol. C- Schmitz-Hartmann

Anlagenverzeichnis

- 1 Lagepläne
 - 1.1 Übersichtsplan
 - 1.2 Lageplan (Bestand) mit eingetragenen Bodenaufschlusspunkten
- 2 Darstellung von Schichtenprofilen
- 3 Höhennivellement
- 4 Ergebnisse der chemischen Untersuchungen
 - 4.1 Ergebnisse der chemischen Untersuchungen von Bodenmischproben
 - 4.2 Tabellarische Darstellung der Ergebnisse der chemischen Untersuchungen
- 5 Schreiben der Stadt Schwerte vom 15.12.2014: Information zu evtl. Kampfmittelbeeinträchtigungen

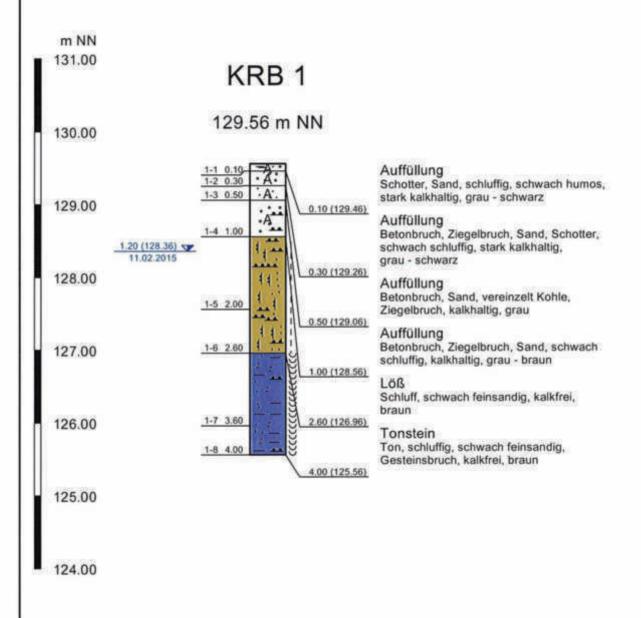

Anlagen

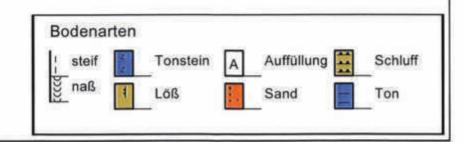


Anlagen 1.1 + 1.2

Lagepläne

- Übersichtsplan
- Lageplan (Bestand) mit eingetragenen Bodenaufschlusspunkten




Anlage 2.1 ff

Darstellung von Schichtenprofilen und Rammdiagrammen

Kerstingskamp 12 48159 Münster Tel.: 0251 / 20127-0 ehem. Grabeland Liegenschaft Dt. Nickel Rosenweg 15, 58239 Schwerte Projekt-Nr. 10-1728 Anlage 2.1

Darstellung eines Schichtenprofils

Kerstingskamp 12 48159 Münster Tel.: 0251 / 20127-0 ehem. Grabeland Liegenschaft Dt. Nickel Rosenweg 15, 58239 Schwerte Projekt-Nr. 10-1728
Anlage 2.2

Darstellung eines Schichtenprofils

Maßstab der Höhe 1:50

m NN 131.00

130.00

KRB 2

129.00 128,19 m NN

2-3 0.50

2-4 1.00

128.00

127.00

126.00

125.00

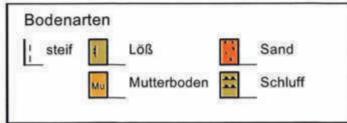
124.00

Mutterboden

Sand, schluffig, Wurzeln, humos, kalkfrei, braun - schwarz

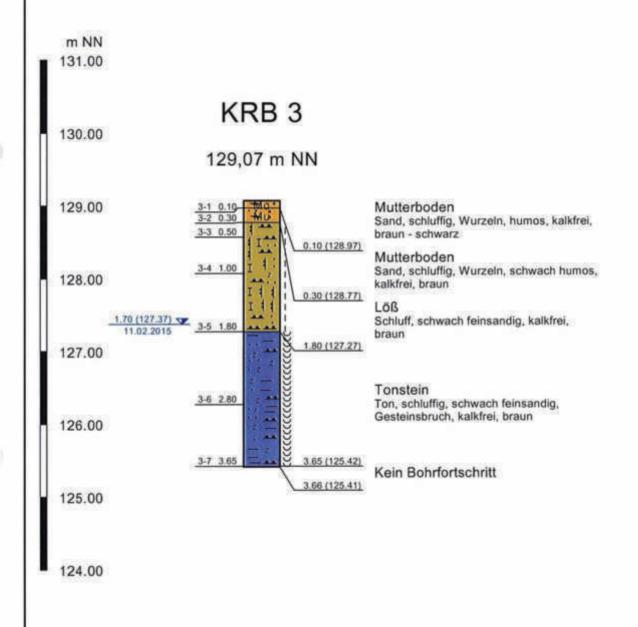
Mutterboden

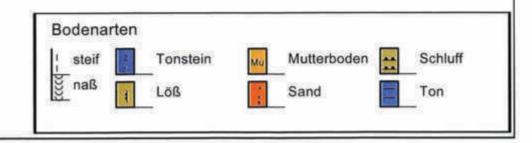
Sand, schluffig, Wurzeln, schwach humos, kalkfrei, braun


-Öß

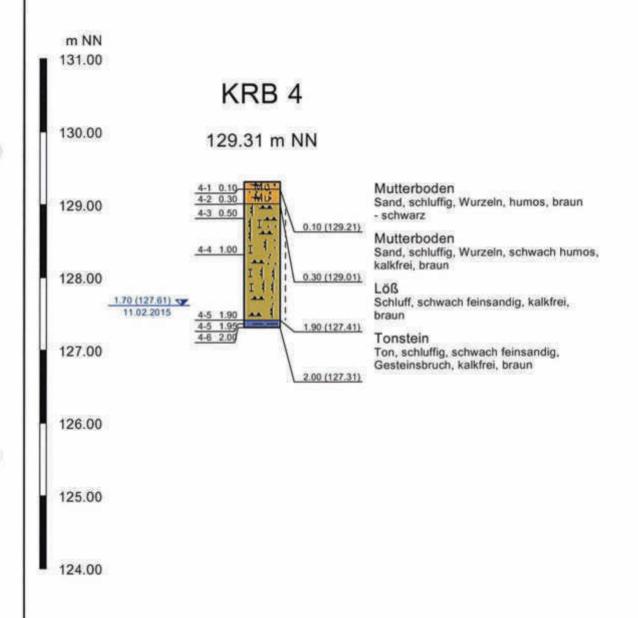
0.10 (128.09)

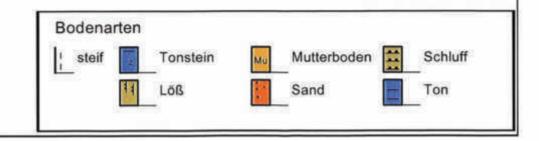
0.30 (127.89)


2.00 (126.19)


Schluff, schwach feinsandig, kalkfrei, braun

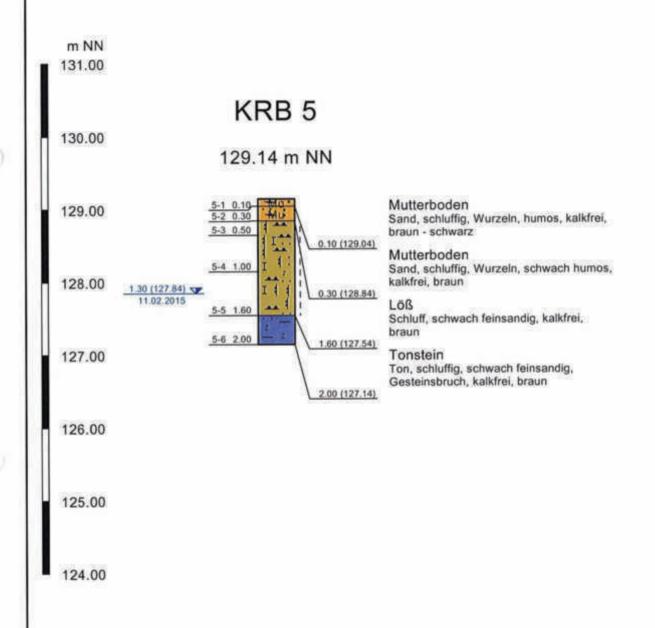
Kerstingskamp 12 48159 Münster Tel.: 0251 / 20127-0 ehem. Grabeland Liegenschaft Dt. Nickel Rosenweg 15, 58239 Schwerte Projekt-Nr. 10-1728
Anlage 2.3

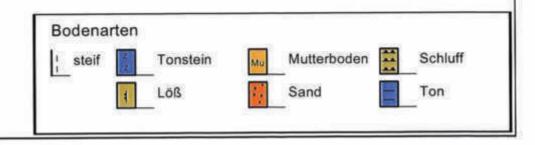

Darstellung eines Schichtenprofils



Kerstingskamp 12 48159 Münster Tel.: 0251 / 20127-0 ehem. Grabeland Liegenschaft Dt. Nickel Rosenweg 15, 58239 Schwerte Projekt-Nr. 10-1728 Anlage 2.4

Darstellung eines Schichtenprofils

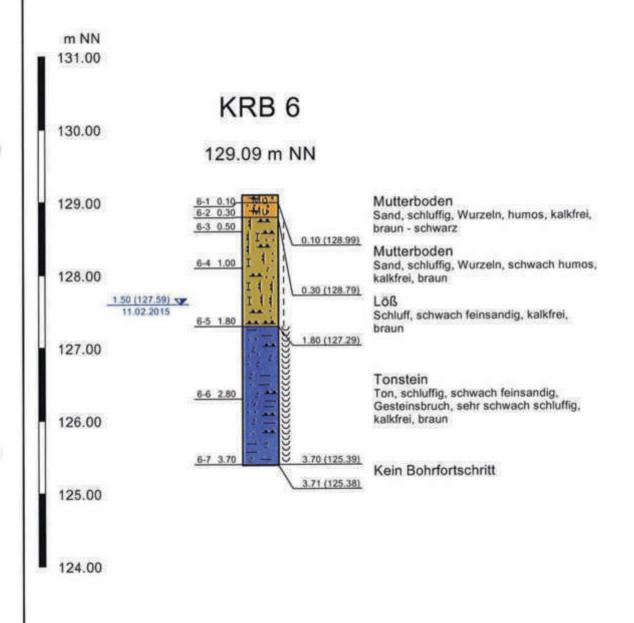


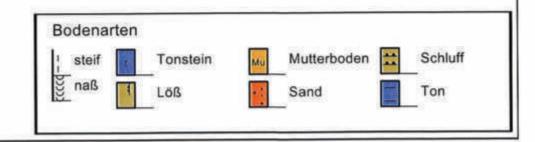

Kerstingskamp 12 48159 Münster Tel.: 0251 / 20127-0

ehem Grabeland Liegenschaft Dt. Nickel Rosenweg 15, 58239 Schwerte

Projekt-Nr. 10-1728 Anlage 2.5

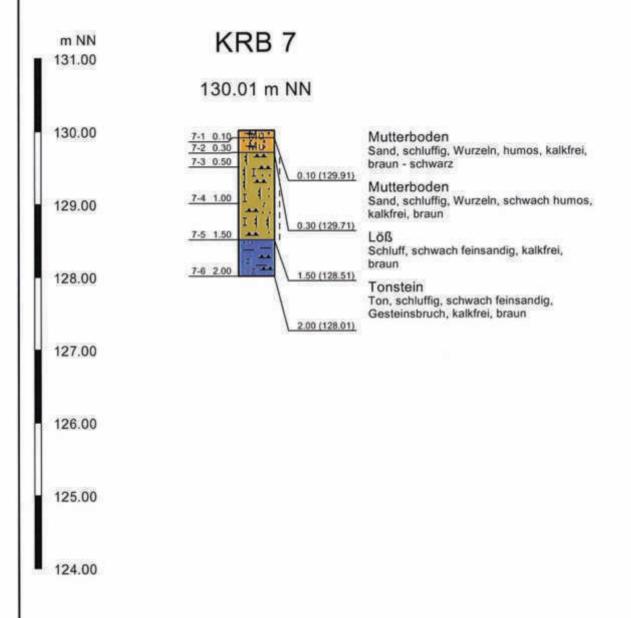
Darstellung eines Schichtenprofils

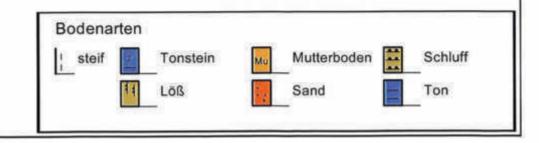



Kerstingskamp 12 48159 Münster Tel.: 0251 / 20127-0

ehem. Grabeland Liegenschaft Dt. Nickel Rosenweg 15, 58239 Schwerte

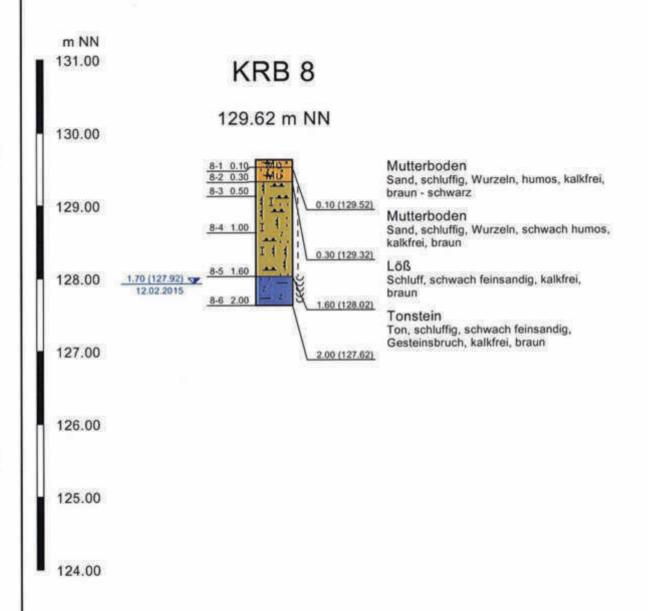
Projekt-Nr.	10-1728
Anlage	2.6

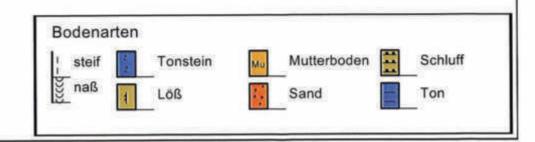

Darstellung eines Schichtenprofils



Kerstingskamp 12 48159 Münster Tel.: 0251 / 20127-0 ehem. Grabeland Liegenschaft Dt. Nickel 58239 Schwerte Projekt-Nr. 10-1728 Anlage 2.7

Darstellung eines Schichtenprofils

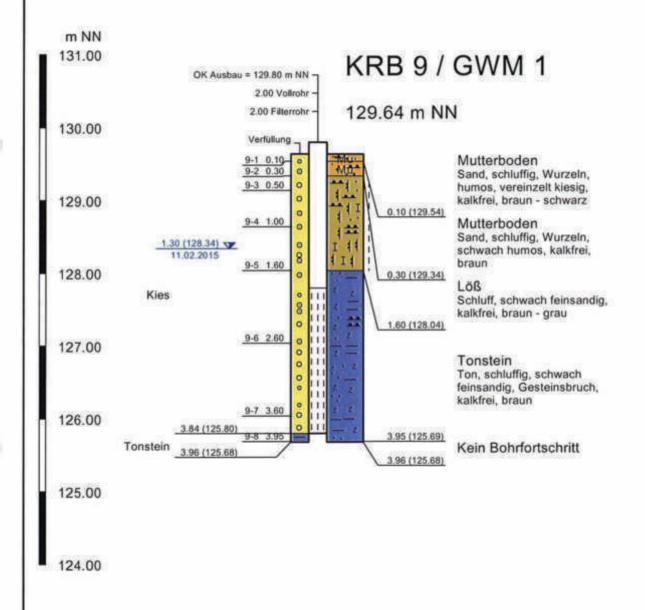


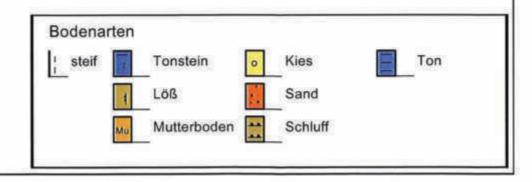

Kerstingskamp 12 48159 Münster Tel.: 0251 / 20127-0

ehem. Grabeland Liegenschaft Dt. Nickel Rosenweg 15, 58239 Schwerte

Projekt-Nr.	10-1728
Anlage	2.8

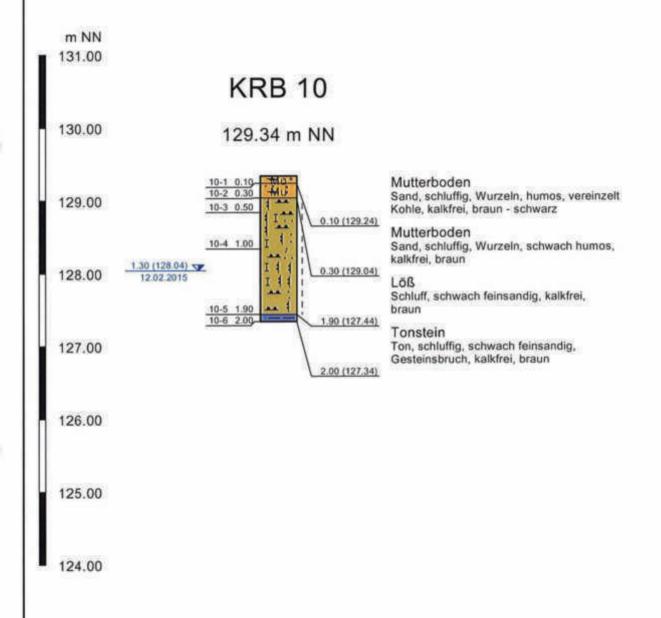
Darstellung eines Schichtenprofils

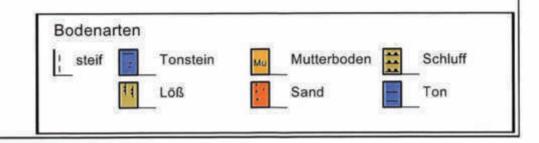



Kerstingskamp 12 48159 Münster Tel.: 0251 / 20127-0 ehem. Grabeland Liegenschaft Dt. Nickel 58239 Schwerte Projekt-Nr. 10-1728

Anlage

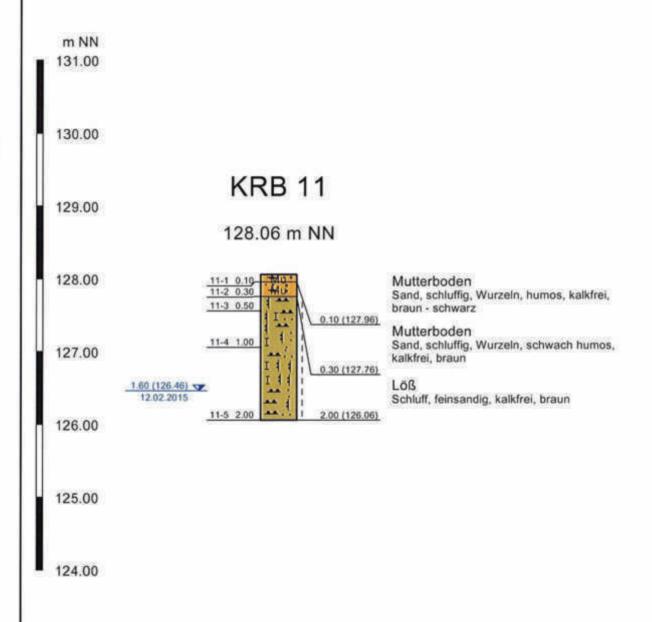
2.9

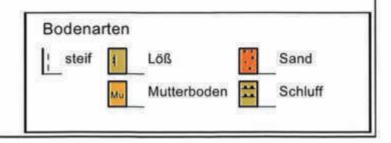

Darstellung Schichtenprofil / Rammpegel



Kerstingskamp 12 48159 Münster Tel.: 0251 / 20127-0 ehem. Grabeland Liegenschaft Dt. Nickel Rosenweg 15, 58239 Schwerte Projekt-Nr. 10-1728 Anlage 2.10

Darstellung eines Schichtenprofils




Kerstingskamp 12 48159 Münster Tel.: 0251 / 20127-0

ehem. Grabeland Liegenschaft Dt. Nickel Rosenweg 15, 58239 Schwerte

Projekt-Nr.	10-1728
Anlage	2.11

Darstellung eines Schichtenprofils

Anlage 3

Höhennivellement

GEOlogik

Höhennivellement

Wilbers & Oeder GmbH

Projekt-Nr.: 10-1728 Anlage 3.1, Seite 1/1

Projekt: ehem. Grabeland

Liegenschaft Dt. Nickel

Datum: 12.2.2015

Ort der Messung: Rosenweg 15, 58239 Schwerte

Bezugspunkt: Kanaldeckel 33128 (129,67 m NN)

Name des Schreibers: Wilmes

Name des Beobachters: Lütke Wissing

Instrumente: Nivelliergerät, Meßlatte

 $\Delta h=(R-V)$ H = Bezugspunkt+ Δh

- 4	Lattena	Lattenablesung			Punkt	
Punkt 1	Rückblick Vorblick		Höhenunter- schied Δh	Höhe des Punktes (m NN)		
	m	m	7.553.9			
1	2	3	4	5	6	

Kanaldeckel	1,574			129,67	Kanaldeckel
KRB 6		2,156	-0,582	129,09	KRB 6
ZP1		1,414	0,160	129,83	ZP1
ZP1	1,616			129,83	ZP1
KRB 8		1,824	-0,208	129,62	KRB 8
KRB 7	30.0	1,432	0,184	130,01	KRB 7
KRB 7	1,683			130,01	KRB 7
KRB 9		2,057	-0,374	129,64	KRB 9
GWM1 POK		1,900	-0,217	129,80	GWM1 POK
ZP2		1,986	-0,303	129,71	ZP2
ZP2	1,485			129,71	ZP2
GWM2 POK		1,322	0,163	129,87	GWM2 POK
KRB 1		1,633	-0,148	129,56	KRB 1
KRB 1	1,410			129,56	KRB 1
KRB 11		2,910	-1,500	128,06	KRB 11
ZP3		2,181	-0,771	128,79	ZP3
ZP3	1,309			128,79	ZP3
KRB 2		1,908	-0,599	128,19	KRB 2
KRB 3		1,028	0,281	129,07	KRB 3
ZP4		1,100	0,209	129,00	ZP4
ZP4	1,967	N. 1 1.		129,00	ZP4
KRB 10		1,626	0,341	129,34	KRB 10
ZP5		1,550	0,417	129,42	ZP5

Bemerkungen:

ZP = Zwischenpunkt (Umsetzpunkt)

Höhennivellement

GEOlogik

Wilbers & Oeder GmbH

Projekt-Nr.: 10-1728 Anlage 3.1, Seite 1/1

Projekt: ehem. Grabeland

Liegenschaft Dt. Nickel

Datum: 12.2.2015

Rosenweg 15, 58239 Schwerte Ort der Messung:

Kanaldeckel 33128 (129,67 m NN) Bezugspunkt:

	Wilmes							
: Lütke Wiss								
Nivellierger	ät, Meßlatte	Line and the second	200					
18-2-		H = Bezugspunkt+	Δh					
	Höhenunter- schied	Höhe des Punktes	Punkt					
	Δn	(m NN)						
	1							
2 3	4	5	6					
448	1	129,42	ZP5					
	-0,112		KRB 4					
			ZP6					
		The second secon	ZP6					
	-0,204		KRB 5					
			JOSHI					
		Nivelliergerät, Meßlatte	Nivelliergerät, Meßlatte					

Bemerkungen:

ZP = Zwischenpunkt (Umsetzpunkt)

GEOlogik GmbH Kerstingskamp 12 48159 Münster

Tel.: 0251 20127-0 Fax: 0251 20127-29

Schichtenverzeichnis

für Bohrungen ohne durchgehende Gewinnung von gekernten Proben

Projekt-Nr.: 10-1728

Anlage: 3.2.1

ehem. Grabeland, Liegenschaft Dt. Nickel, Rosenweg 15, 58239 Schwerte Vorhaben: Datum: Bohrung KRB 1 / Blatt: 1 Höhe: 129.56 m NN 11.02.2015 2 1 3 4 5 Entnommene a) Benennung der Bodenart Proben und Beimengungen Bemerkungen Bis Sonderprobe b) Ergänzende Bemerkung 1) ... m Wasserführung Tiefe unter Beschaffenheit d) Beschaffenheit Bohrwerkzeuge in m e) Farbe Art Nr nach Bohrgut nach Bohrvorgang Ansatz Kernverlust (Unterh) 1) punkt i) Kalk-Sonstiges kante) Geologische Benennung 1) **Ubliche** Benennung Gruppe gehalt schwach feucht -0.10 1-1 Auffüllung, Schotter, Sand, schluffig, schwach humos, stark kalkhaltig feucht b) 0.10 d) leicht bohrbar e) grau - schwarz f) Auffüllung g) h) i) schwach feucht 1-2 0.30 Auffüllung, Betonbruch, Ziegelbruch, Sand, Schotter, schwach schluffig, stark kalkhaltig b) 0.30 c) d) mittelschwer e) grau - schwarz bohrbar h) Auffüllung g) 1) ++ schwach feucht -1-3 0.50 Auffüllung, Betonbruch, Sand, vereinzelt Kohle, feucht Ziegelbruch, kalkhaltig b) 0.50 C) d) mittelschwer e) grau bohrbar h) f) Auffüllung i) g) 1.00 feucht 1-4 Auffüllung, Betonbruch, Ziegelbruch, Sand, schwach schluffig, kalkhaltig b) 1.00 d) mittelschwer e) grau - braun bohrbar h) g) i) Auffüllung 2.00 feucht - sehr 1-5 a) Löß, Schluff, schwach feinsandig, kalkfrei feucht 1-6 2.60 b) 2.60 c) steif d) mittelschwer e) braun bohrbar - schwer b f) i) g) 0

1) Eintragung nimmt der wissenschaftliche Bearbeiter vor

GEOlogik GmbH Kerstingskamp 12 48159 Münster Tel.: 0251 20127-0

Fax: 0251 20127-29

Schichtenverzeichnis

für Bohrungen ohne durchgehende Gewinnung von gekernten Proben

Projekt-Nr.: 10-1728

Anlage: 3.2.2

Boh	rung	KRB 1	/ Blatt: 2		Höhe:	129.56 m NN	Date 11.0	um:)2.201	5
1	П		2			3	4	5	6
Die	a) 8	Benennung der Bod und Beimengungen	Bemerkungen	Entnommene Proben					
Bis		Ergänzende Bemerk	rung 1)			Sonderprobe			Tiefe
m unter Ansatz-	c) E	Beschaffenheit nach Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe	66	Wasserführung Bohrwerkzeuge Kernverlust	Art	Nr	in m (Unter-
punkt		Obliche Benennung		i) Kalk- gehalt	Sonstiges			kante)	
	a) 1	Fonstein, Ton, schlu Sesteinsbruch, kalkl	iffig, schwach feinsandig, frei			naß		1-7 1-8	3.60 4.00
4.00	b)				9				
4.00	c)		d) mittelschwer bohrbar - schwer b	e) braun					
	f)		9)	h)	0			0 .	
	a)								
	b)	5 500							
	c)	1850	d)	e)					
8	f)		9)	h)	0				
	a)								
	b)								
	c)		d)	e)					
	f)	20.00	9)	h)	1)				
	a)		211			,			
	b)								
	c)		d)	e)					
	f)		g)	h)	i)				
	a)								
	b)	100							
	c)		d)	e)					
	f)		9)	h)	i)·				
1) Eint	ragun	g nimmt der wissen	schaftliche Bearbeiter vor				\Box	-	

GEOlogik GmbH Kerstingskamp 12 48159 Münster Tel.: 0251 20127-0 Fax: 0251 20127-29

Schichtenverzeichnis

für Bohrungen ohne durchgehende Gewinnung von gekernten Proben

Projekt-Nr.: 10-1728

Anlage: 3.2.3

Boh	run	g KRB 2	/ Blatt: 1		Höhe:	128,19 m NN	11.0	um: 02.201	5
1	Т		2			3	4	5	6
Bis	a)	Benennung der Bo und Beimengunger	Bemerkungen	Entnommene Proben					
m	b)	Ergänzende Bemer	kung ¹⁾			Sonderprobe Wasserführung			Tiefe
unter Ansatz-		Beschaffenheit nach Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust	Art	Nr	in m
punkt	f)	Übliche Benennung	g) Geologische Benennung ¹⁾	h) 1) Gruppe	i) Kalk- gehalt	Sonstiges			kante
	a)	Mutterboden, Sand	, schluffig, Wurzeln, humos	s, kalkfrei		schwach feucht		2-1	0.10
0.10	b)	550	· · · · · · · · · · · · · · · · · · ·	***	-	8			
0.10	c)		d) leicht bohrbar	e) braun	- schwarz	8			8
	f)		g)	h)	1)	N.	8		
	a)	Mutterboden, Sand kalkfrei		schwach feucht		2-2	0.30		
0.30	b)	H							
0.50	c)		d) leicht bohrbar	e) braun					
	f)	St. 1101	9)	h)	i) O				
	a)	Löß, Schluff, schwa	schwach feucht - sehr feucht		2-4 2-5	1.00			
	b)				.75	2.00			
2.00	c)	steif d) leicht bohrbar e) braun							
	f)		g)	h)	i) O				
	a)	110							
	b)								
	c)	176	d)	e)					
	f)		g)	h)	i)				
	a)								
	b)								
	c)	-	d)	e)					
- 4	f)		g)	h)	i)				

GEOlogik GmbH Kerstingskamp 12 48159 Münster Tel.: 0251 20127-0

Fax: 0251 20127-29

Schichtenverzeichnis

für Bohrungen ohne durchgehende Gewinnung von gekemten Proben

Projekt-Nr.: 10-1728

Anlage: 3.2.4

Boh	rung KRB	3 / Blatt: 1		Höhe:	129,07 m NN	11.0	um: 02.201	5	
1		2			3	4	5	6	
Bis	a) Benennung de und Beimengu	Benennung der Bodenart und Beimengungen					Entnommene Proben		
m	b) Ergänzende B	emerkung ¹⁾			Sonderprobe Wasserführung			Tiefe	
unter Ansatz-	 c) Beschaffenhei nach Bohrgut 	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust	Art	Nr	in m	
punkt	f) Obliche Benennung	g) Geologische Benennung 1)	Sonstiges			kante)			
	a) Mutterboden,	Sand, schluffig, Wurzeln, humos	s, kalkfrei		schwach feucht		3-1	0.10	
0.10	b)								
0.10	c)	d) leicht bohrbar	e) braun	- schwarz					
	f)	g)	h)	i) O					
	a) Mutterboden, S kalkfrei	Sand, schluffig, Wurzeln, schwa	schwach feucht		3-2	0.30			
0.30	b)								
	c)	d) feicht bohrbar	e) braun						
	n	g)	h)	i) O				3	
	a) Löß, Schluff, s	a) Löß, Schluff, schwach feinsandig, kalkfrei					3-3 3-4	0.50	
1.80	b)	b)					3-5	1.80	
1.00	c) steif	d) mittelschwer bohrbar	e) braun	e) braun					
	n	9)	h)	i) O					
	a) Tonstein, Ton, Gesteinsbruch	Tonstein, Ton, schluffig, schwach feinsandig, Gesteinsbruch, kalkfrei					3-6 3-7	2.80 3.65	
3.65	b)	10000					5555		
0.00	c)	d) schwer bohrbar - sehr schwer bohrba	e) braun						
	n	g)	h)	i) O					
	a) Kein Bohrforts	2 317		(AUTO)					
3.66	b)	b)							
0.00	c)	d)	e)						
	n	g)	h)	1)					

GEOlogik GmbH Kerstingskamp 12 48159 Münster Tel.: 0251 20127-0 Fax: 0251 20127-29

Schichtenverzeichnis

für Bohrungen ohne durchgehende Gewinnung von gekernten Proben

Projekt-Nr.: 10-1728

Anlage: 3.2.5

Boh	rung KRB 4	/ Blatt: 1		Höhe:	129.31 m NN	11.0	um:)2.201	5		
1		2			3	4	5	6		
	a) Benennung der E	Benennung der Bodenart und Beimengungen						Entnommene Proben		
Bis		b) Ergänzende Bemerkung 1)					1	500000		
m unter Insatz-	c) Beschaffenheit nach Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farb	е	Wasserführung Bohrwerkzeuge Kernverlust	Art	Nr	In m (Unte		
punkt	f) Übliche Benennung							kante		
	a) Mutterboden, Sa	nd, schluffig, Wurzeln, humos	3		schwach feucht		4-1	0.10		
	b)		-							
0.10	c)	d) feicht bohrbar	e) brau	n - schwarz	5					
#3U8	n	g)	h)	i)						
0.30	a) Mutterboden, Sar kalkfrei	schwach feucht	a :	4-2	0.30					
	b)	b)						ļ,		
	c)	d) leicht bohrbar	e) brau	n						
	f)	9)	h)	i) O						
	a) Löß, Schluff, sch	feucht		4-3 4-4	0.50					
1.90	b)			4-5	1.90					
1.00	c) steif	d) mittelschwer bohrbar	e) braun							
	ŋ	9)	h)	i) O		10				
	a) Tonstein, Ton, so Gesteinsbruch, k	hluffig, schwach feinsandig, alkfrei			feucht		4-6	2.00		
2.00	b)									
	c)	d) mittelschwer bohrbar -	e) braur	1						
	n	g)	h)	0						
200	а)	1								
	b)		750		8					
	c)	d)	e)							
	f)	g)	h)	i)						

GEOlogik GmbH Kerstingskamp 12 48159 Münster Tel.: 0251 20127-0

Fax: 0251 20127-29

Schichtenverzeichnis

für Bohrungen ohne durchgehende Gewinnung von gekemten Proben

Projekt-Nr.: 10-1728

Anlage: 3.2.6

Boh	rung KRB 5	/ Blatt: 1		Höhe:	129.14 m NN	Date			
A-10-00 M		S WESTERSON		110110		11.6	2,201		
1		2			3	4	5	6	
Bis	 a) Benennung der und Beimengung 	Bodenart gen			Bemerkungen	Entnommene Proben			
m	b) Ergänzende Ber	nerkung 1)			Sonderprobe Wasserführung			Tiefe	
unter Ansatz-	 c) Beschaffenheit nach Bohrgut 	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Kernverlust	V 1807/2001/19/00/2016/00	Art	Nr	in m (Unte
punkt	f) Übliche Benennung	g) Geologische Benennung 1)	h) 1) Gruppe	i) Kalk- gehalt	Sonstiges			kante	
	a) Mutterboden, Sa	and, schluffig, Wurzeln, humos	s, kalkfrei		пав		5-1	0.10	
	b)	90			6				
0.10	c)	d) feicht bohrbar	e) braun	- schwarz					
- 30	Ŋ	g)	h)	1)					
	a) Mutterboden, Sa kalkfrei	schwach feucht		5-2	0.30				
0.30	b)	b)							
0.30	c)	d) leicht bohrbar	e) braun						
ı	n	9)	h)	i) O					
15	a) Löß, Schluff, sch	feucht - sehr feucht		5-3 5-4	0.50				
1.60	b)	3000000		5-5	1.60				
1.00	c) steif	d) mittelschwer bohrbar	e) braun						
	f)	g)	h)	i) 0					
	a) Tonstein, Ton, s Gesteinsbruch, i	chluffig, schwach feinsandig, kalkfrei			feucht - sehr feucht		5-6	2.00	
2.00	b)								
2.00	c)	d) mittelschwer bohrbar - schwer b	e) braun						
	n	g)	h)	i) O					
	a)								
	b)	b)							
	c)	d)	e)						
	f)	g)	h)	i)					

GEOlogik GmbH Kerstingskamp 12 48159 Münster Tel.: 0251 20127-0

Fax: 0251 20127-29

Schichtenverzeichnis

für Bohrungen ohne durchgehende Gewinnung von gekernten Proben

Projekt-Nr.: 10-1728

Anlage: 3.2.7

Vorhaben: ehem. Grabeland, Liegenschaft Dt. Nickel, Rosenweg 15, 58239 Schwerte Datum: Bohrung KRB 6 / Blatt: 1 Höhe: 129.09 m NN 11.02.2015 2 1 3 4 5 Entnommene Proben a) Benennung der Bodenart und Beimengungen Bemerkungen Bis b) Ergänzende Bemerkung 1) Sonderprobe ... m Wasserführung Tiefe c) Beschaffenheit unter d) Beschaffenheit Bohrwerkzeuge in m e) Farbe Art Nr nach Bohrgut nach Bohrvorgang Ansatz Kernverlust (Unterh) 1) punkt i) Kalk-Sonstiges kante) Geologische Benennung **Ubliche** Benennung Gruppe gehalt a) Mutterboden, Sand, schluffig, Wurzeln, humos, kalkfrei schwach feucht 6-1 0.10 b) 0.10 c) stelf d) leicht bohrbar e) braun - schwarz f) g) h) i) 0 schwach feucht 0.30 a) Mutterboden, Sand, schluffig, Wurzeln, schwach humos, 6-2 kalkfrei b) 0.30 c) d) leicht bohrbar e) braun h) g) i) 0 schwach feucht 6-3 0.50 a) Löß, Schluff, schwach feinsandig, kalkfrei 6-4 1.00 6-5 1.80 b) 1.80 d) mittelschwer e) braun c) steif bohrbar f) h) g) 0 feucht - naß, GW 2.80 6-6 Tonstein, Ton, schluffig, schwach feinsandig, 6-7 Gesteinsbruch, sehr schwach schluffig, kalkfrei (2.8, 11.02.15)3.70 b) 3.70 d) e) braun c) h) i) g) 0 a) Kein Bohrfortschritt b) 3.71 d) c) e) h) i) g)

Eintragung nimmt der wissenschaftliche Bearbeiter vor

GEOlogik GmbH Kerstingskamp 12 48159 Münster Tel.: 0251 20127-0 Fax: 0251 20127-29

Schichtenverzeichnis

für Sohrungen ohne durchgehende Gewinnung von gekernten Proben

Projekt-Nr.: 10-1728

Anlage: 3,2.8

Boh	run	g KRB 7	/ Blatt: 1		Höhe:	130.01 m NN	Dat 12.0	um: 02.201	5
1	Г		2	25 HL		3	4	5	6
Bis	a)	Benennung der Bod und Beimengungen	lenart			Bemerkungen	Entnommene Proben		
m	b)	Ergänzende Bemerk	kung ¹⁾			Sonderprobe Wasserführung			Tiefe
unter Ansatz-	c)	Beschaffenheit nach Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe	1	Bohrwerkzeuge Kernverlust	Art	Nr	in m (Unter-
punkt	f)	Übliche Benennung	g) Geologische Benennung 1)	h) 1) Gruppe	i) Kalk- gehalt	Sonstiges			kante)
	a)	Mutterboden, Sand,	schluffig, Wurzeln, humos	, kalkfrei		sehr schwach feucht		7-1	0.10
	b)		180)			recont			
0.10	c)		d) leicht bohrbar	e) braun	- schwarz	5			
	f)	No.	g)	h)	1)	S.			
	a)	Mutterboden, Sand, kalkfrei	schwach feucht		7-2	0.30			
0.00	b)								
0.30	c)	-111.00	d) feicht bohrbar	e) braun		8			
	f)	38300	9)	h)	i) O				
	a)	Löß, Schluff, schwad	schwach feucht - feucht		7-3 7-4	0.50 1.00			
1.50	b)	- 110			7-5	1.50			
(1)	c)	steif	d) leicht bohrbar e) braun						
1	f)		9)	h)	i) O				
	a)	Tonstein, Ton, schlu Gesteinsbruch, kalkf	ffig, schwach feinsandig, frei			feucht		7-6	2.00
	b)	- 1							
2.00	c)	-	d) mittelschwer bohrbar	e) braun					
	f)		9)	h)	1)				
	a)								
	b)	7.							
	c)		d)	e)					
	f)		9)	h)	i)				

GEOlogik GmbH Kerstingskamp 12 48159 Münster

Tel.: 0251 20127-0 Fax: 0251 20127-29

Schichtenverzeichnis

für Bohrungen ohne durchgehende Gewinnung von gekernten Proben

Projekt-Nr.: 10-1728

Anlage: 3.2.9

ehem. Grabeland, Liegenschaft Dt. Nickel, Rosenweg 15, 58239 Schwerte Vorhaben: Datum: KRB 8 Bohrung / Blatt: 1 Höhe: 129.62 m NN 12.02.2015 1 2 3 4 5 a) Benennung der Bodenart und Beimengungen Entnommene Proben Bemerkungen Bis Sonderprobe b) Ergänzende Bemerkung 1) ... m Wasserführung Tiefe unter Beschaffenheit d) Beschaffenheit Bohrwerkzeuge in m e) Farbe Nr Art nach Bohrgut nach Bohrvorgang Ansatz Kernverlust (Unter-Geologische h) 1) punkt i) Kalk-Sonstiges kante) Übliche Benennung gehalt Benennung Gruppe schwach feucht 8-1 0.10 a) Mutterboden, Sand, schluffig, Wurzeln, humos, kalkfrei b) 0.10 C) d) leicht bohrbar e) braun - schwarz h) g) 1) 0 sehr schwach 8-2 0.30 a) Mutterboden, Sand, schluffig, Wurzeln, schwach humos, feucht b) 0.30 c) d) leicht bohrbar e) braun h) g) i) 0 schwach feucht a) Löß, Schluff, schwach feinsandig, kalkfrei 8-3 0.50 feucht 8-4 1.00 8-5 1.60 b) 1.60 c) steif d) leicht bohrbar e) braun f) h) i) 0 2.00 Tonstein, Ton, schluffig, schwach feinsandig, 8-6 Gesteinsbruch, kalkfrei b) 2.00 e) braun mittelschwer bohrbar f) g) h) i) 0 a) b) c) d) e) i) g) h) 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor

GEOlogik GmbH Kerstingskamp 12 48159 Münster Tel: 0251 20127-0

Tel.: 0251 20127-0 Fax: 0251 20127-29

Schichtenverzeichnis

für Bohrungen ohne durchgehende Gewinnung von gekennten Proben

Projekt-Nr.: 10-1728

Anlage: 3.2.10

Vorhaben: ehem. Grabeland, Liegenschaft Dt. Nickel, Rosenweg 15, 58239 Schwerte Datum: KRB 9 / GWM 1 Bohrung / Blatt: 1 Höhe: 129.64 m NN 12.02.2015 2 3 4 5 Entnommene a) Benennung der Bodenart Proben und Beimengungen Bemerkungen Bis Sonderprobe b) Ergänzende Bemerkung 1) ... m Wasserführung Tiefe unter Beschaffenheit d) Beschaffenheit Bohrwerkzeuge in m e) Farbe Art Nr nach Bohrgut nach Bohrvorgang Ansatz Kernverlust (Unter-Geologische 1) h) 1) punkt i) Kalk-Sonstiges kante) **Obliche** Benennung Benennung Gruppe gehalt schwach feucht 9-1 0.10 a) Mutterboden, Sand, schluffig, Wurzeln, humos, vereinzelt kiesig, kalkfrei b) 0.10 c) d) leicht bohrbar e) braun - schwarz f) h) g) i) 0 schwach feucht 9-2 0.30 a) Mutterboden, Sand, schluffig, Wurzeln, schwach humos, kalkfrei b) 0.30 d) leicht bohrbar e) braun h) i) 0 a) Löß, Schluff, schwach feinsandig, kalkfrei feucht 9-3 0.50 9-4 1.00 9-5 1.60 b) 1.60 e) braun - grau c) steif d) mittelschwer bohrbar h) f) g) i) 0 sehr feucht 9-6 Tonstein, Ton, schluffig, schwach feinsandig, 2.60 Gesteinsbruch, kalkfrei 9-7 3.60 3.95 9-8 b) 3.95 C) d) schwer bohrbar e) braun sehr schwer bohrba g) h) i) 0 a) Kein Bohrfortschritt b) 3.96 C) d) e) h) I) 9)

Eintragung nimmt der wissenschaftliche Bearbeiter vor

GEOlogik GmbH Kerstingskamp 12 48159 Münster Tel.: 0251 20127-0 Fax: 0251 20127-29

Schichtenverzeichnis

für Bohrungen ohne durchgehende Gewinnung von gekernten Proben

Projekt-Nr.: 10-1728

Anlage: 3.2.11

Boh	rung KRI	3 10 / Blatt: 1		Höhe:	129.34 m NN	20553	um; 02.201	5
1		2			3	4	5	6
Bis	Benennung der Bodenart und Beimengungen			Bemerkungen	Entnommene Proben		mene en	
m	b) Ergänzende Bemerkung 1)				Sonderprobe Wasserführung	Art		Tiefe
unter insatz-	c) Beschaffenheit nach Bohryorgang e) Farbe		Bohrwerkzeuge Kernverlust	Nr	in m (Unter			
punkt	f) Übliche Benennung	g) Geologische Benennung 1)	h) 1) Gruppe	i) Kalk- gehalt	Sonstiges			kante
	a) Mutterboden vereinzelt Ko	Mutterboden, Sand, schluffig, Wurzeln, humos, vereinzelt Kohle, kalkfrei					10-1	0.10
0.10	b)			-	\$			
0.10	c)	d) leicht bohrbar	e) braun - schwarz					
	f) Auffüllung	g)	h)	i) O				
	Mutterboden, Sand, schluffig, Wurzeln, schwach humos, kalkfrei				feucht		10-2	0.30
0.30	b)							
0.30	c) steif) steif d) feicht bohrbar e) braun						
	0	g)	h)	i) O				
	a) Löß, Schluff,	schwach feinsandig, kalkfrei			feucht		10-3 10-4	0.50
	b)	(SIII)					10-5	1.90
1.90	c) steif	d) leicht bohrbar - mittelschwer bohrb					ĺ	
	ŋ	9)	h)	i) O				
	Tonstein, Ton, schluffig, schwach feinsandig, Gestelnsbruch, kalkfrei			feucht - sehr feucht		10-6	2.00	
oreaca	b)							
2.00	c)	d) mittelschwer bohrbar	e) braun					
	Ŋ	g)	h)	i) O				
	a)							
	b)	_	27-71					
	c)	d)	8)					
	ŋ	g)	h)	i)				

GEOlogik GmbH Kerstingskamp 12 48159 Münster Tel.: 0251 20127-0

Fax: 0251 20127-29

Schichtenverzeichnis

für Bohrungen ohne durchgehende Gewinnung von gekernten Proben

Projekt-Nr.: 10-1728

Anlage: 3.2.12

Boh	rung KRB	11 / Blatt: 1		Höhe:	128.06 m NN	41203477	um: 02.201	5
1		2			3	4	5	6
Bis	Benennung der Bodenart und Beimengungen				Bemerkungen	Entnommene Proben		
m	b) Ergänzende Be	b) Ergänzende Bemerkung 1)						Tiefe
unter Ansatz-	c) Beschaffenheit nach Bohrgut	fenheit d) Beschaffenheit e) Farbe Wasserführung Bohrwerkzeug Kernverlust		Bohrwerkzeuge	Art	Nr	in m (Unter-	
punkt	f) Übliche Benennung	g) Geologische Benennung 1)	h) 1) Gruppe	i) Kalk- gehalt	Sonstiges			kante)
	a) Mutterboden, S	and, schluffig, Wurzeln, humo	s, kalkfrei		schwach feucht		11-1	0.10
0.10	b)							
0.10	c)	d) leicht bohrbar	e) braun	- schwarz				
	f)	9)	h)	i) O				
	a) Mutterboden, S kalkfrei	and, schluffig, Wurzeln, schwa	ch humos,	0	schwach feucht		11-2	0.30
0.30	b)							
	c)	d) leicht bohrbar	e) braun					
	f)	9)	h)	i) O				
	a) Löß, Schluff, feinsandig, kalkfrei				feucht - sehr feucht		11-3	0.50
2.00	b)			-			11-5	2.00
2.00	c) steif	d) leicht bohrbar	e) braun					
	n	9)	h)	0				
	а)							
	b)							
	c)	d)	e)	-				
	f)	9)	h)	i)				
	a)							-0-
	b)	<u> </u>						
	c)	c) d) e)						
	n	g)	h)	i)				

Anlage 4

Ergebnisse der chemischen Untersuchungen

Laboratorien Dr. Döring Haferwende 12 28357 Bremen

GEOlogik Wilbers & Oeder GmbH Kerstingskamp 12

48159 MÜNSTER

25. Februar 2015

PRÜFBERICHT

190215P

Auftragsnr, Auftraggeber:

10-1728

Projektbezeichnung:

ehem. Grabeland, Dt. Nickel, Schwerte

Probenahme:

durch Auftraggeber am 11.02. - 12.02.2015

Probentransport:

durch Dr. Döring GmbH am 18.02.2015

Probeneingang:

19.02.2015

Prüfzeitraum:

19.02.2015 - 25.02.2015

Probennummer:

14268 - 14273 / 15

Probenmaterial:

Boden

Verpackung:

Weißglas (0,5L)

Bemerkungen:

-

Sonstiges:

Der Messfehler dieser Prüfungen belindet sich im üblichen Rahmen. Näheres teilen wir Ihnen auf Anfrage gerne mit. Die Prüfergebnisse beziehen sich ausschließlich auf die angegebenen Prüfeggenstände. Eine auszugsweise Vervielfältigung dieses Prüfberichts bedarf der schriftlichen Genehmigung durch die Laboratorien Dr. Döring GmbH.

Analysenbefunde:

Seite 3 - 8

Messverfahren:

Seite 2

Qualitätskontrolle:

Dr. Ralf Rohlfing (Laborleiter) Dr. Joachim Döring (Geschäftsführer)

Prüfbericht

190215P.doc

Seite 1 von 8

Probenvorbereitung:

Messverfahren:

DIN 19747

Trockenmasse DIN ISO 11465 TOC Kohlenwasserstoffe (GC;F) Phenol-Index Cyanide (F)

Cyanide (E) Chlorid Sulfat Arsen (F; E) Blei (F; E) Cadmium (F; E) Chrom (F; E) Kupfer (F; E) Nickel (F; E)

Quecksilber (F; E) Thallium (F; E) Zink (F; E)

PAK PCB BTEX LHKW

EOX pH-Wert (W,E) el. Leitfähigkeit

Eluat Aufschluss **DIN EN 13137 DIN EN 14039** DIN 38409-16 **DIN ISO 11262** DIN 38405-13 DIN EN ISO 10304-1 DIN EN ISO 10304-1

DIN EN ISO 11885 (E22); -17294-2 DIN EN ISO 11885 (E22); -17294-2

DIN EN 1483 (E12) DIN EN ISO 17294-2

DIN EN ISO 11885 (E22); -17294-2

DIN ISO 18287 DIN EN 15308 DIN 38407-9

DIN EN ISO 10301 (F4, HS-GC/MS)

DIN 38414-17 **DIN EN ISO 10523 DIN EN 27888** DIN EN 12457-4 **DIN EN 13657**

28357 bremen

fon 04 21 · 2 07 22 75 fax 04 21 · 27 55 22

Labornummer	14268	14269	14270
Probenbezeichnung	MP 01	MP 02	MP 03
Entnahmetiefe	0,0-0,1m	0,0-0,1m	0,1-0,3m
Dimension	[mg/kg TS]	[mg/kg TS]	[mg/kg TS
Trockenmasse [%]	75,6	76,8	79,3
TOC [%]	3,5	2,1	1,1052-2000
Kohlenwasserstoffe, n-C ₁₀₋₂₂	< 5	< 5	1,3
Kohlenwasserstoffe, n-C ₁₀₋₄₀	31	25	< 5
Cyanid, gesamt	0,13	0,15	20
EOX	0,13	< 0,15	0,14
	0,2	< 0,1	< 0,1
Arsen	9,3	9,2	6,4
Blei	54	47	31
Cadmium	0,6	0,5	0,3
Chrom	23	31	16
Kupfer	31	51	24
Nickel	25	49	17
Quecksilber	< 0,1	< 0,1	< 0,1
Thallium	0,2	0,2	0,1
Zink	130	160	80
PCB 28	< 0,001	< 0,001	< 0,001
PCB 52	< 0,001	< 0,001	< 0,001
PCB 101	0,003	< 0,001	< 0,001
PCB 138	0,010	0,002	0,002
PCB 153	0,008	0,002	0,001
PCB 180	0,005	0,001	0,001
Summe PCB (6 Kong.)	0,026	0,005	0,004
Naphthalin	0,008	0,019	0,004
Acenaphthylen	0,010	0,008	0,007
Acenaphthen	0,005	0,010	0,007
Fluoren	0,006	0,009	0,003
Phenanthren	0,090	0,081	0,004
Anthracen	0,022	0,019	0,015
Fluoranthen	0,236	0,168	0,162
Pyren	0,192	0,128	0,102
Benzo(a)anthracen	0,139	0,088	0,079
Chrysen	0,138	0,091	0,084
Benzo(b)fluoranthen	0,276	0,154	0,139
Benzo(k)fluoranthen	0,083	0,049	0,046
Benzo(a)pyren	0,157	0,829	0,079
ndeno(1,2,3-cd)pyren	0,113	0,058	0,058
Dibenzo(a,h)anthracen	0,048	0,016	0,014
Benzo(g,h,i)perylen	0,113	0,058	0,058
Summe PAK (EPA)	1,636	1,785	0,953

Labornummer	14268	14269	14270
Probenbezeichnung	MP 01	MP 02	MP 03
Entnahmetiefe	0,0-0,1m	0,0-0,1m	0,1-0,3m
Dimension	[mg/kg TS]	[mg/kg TS]	[mg/kg TS]
Benzol	< 0,01	< 0.01	< 0,01
Toluol	< 0,01	< 0,01	< 0,01
Ethylbenzol	< 0,01	< 0,01	< 0.01
Xylole	< 0.01	< 0.01	< 0.01
Trimethylbenzole	< 0.01	< 0,01	< 0,01
Summe BTEX	n.n.	n.n.	n.n.
Vinylchlorid	< 0,01	< 0,01	< 0,01
1,1-Dichlorethen	< 0.01	< 0.01	< 0,01
Dichlormethan	< 0,01	< 0.01	< 0,01
1,2-trans-Dichlorethen	< 0,01	< 0.01	< 0.01
1,1-Dichlorethan	< 0.01	< 0.01	< 0.01
1,2-cis-Dichlorethen	< 0.01	< 0.01	< 0,01
Tetrachlormethan	< 0,01	< 0.01	< 0,01
1,1,1-Trichlorethan	< 0,01	< 0,01	< 0.01
Chloroform	< 0.01	< 0,01	< 0,01
1,2-Dichlorethan	< 0,01	< 0.01	< 0,01
Trichlorethen	< 0,01	< 0,01	< 0,01
Dibrommethan	< 0.01	< 0.01	< 0,01
Bromdichlormethan	< 0,01	< 0,01	< 0,01
Tetrachlorethen	< 0,01	< 0.01	< 0.01
1,1,2-Trichlorethan	< 0,01	< 0.01	< 0.01
Dibromchlormethan	< 0,01	< 0,01	< 0,01
Tribrommethan	< 0,01	< 0,01	< 0,01
Summe LHKW	n.n.	n.n.	n.n.

Labornummer	14268	14269	14270
Probenbezeichnung	MP 01	MP 02	MP 03
Entnahmetiefe	0,0-0,1m	0,0-0,1m	0,1-0,3m
Dimension	ELUAT [μg/L]	ELUAT [µg/L]	ELUAT [µg/L]
pH-Wert	7,4	6,1	7,1
el. Leitfähigkeit [μS/cm]	61	45	37
Phenol-Index	< 10	< 10	< 10
Cyanid, gesamt	< 5	< 5	< 5
Chlorid	1,200	3.200	2.700
Sulfat	1.800	1.700	1.100
Arsen	2,8	< 2,0	2,9
Blei	< 0,2	0,3	0,5
Cadmium	< 0,2	< 0,2	< 0,2
Chrom	< 0,3	0,4	0,4
Kupfer	2,3	4,1	2,9
Nickel	< 1,0	3,3	< 1,0
Quecksilber	< 0,1	< 0,1	< 0,1
Zink	6,9	5,7	6,5

Labornummer	14271	14272	14273
Probenbezeichnung	MP 04	MP 05	MP 06
Entnahmetiefe	0,1-0,3m	0,3-1,0m	0,3-1,0m
Dimension	[mg/kg TS]	[mg/kg TS]	[mg/kg TS]
Trockenmasse [%]	70.4	04.4	01.5
TOC [%]	78,1	81,1	81,5
	1,9	0,28	0,50
Kohlenwasserstoffe, n-C ₁₀₋₂₂	< 5	< 5	< 5
Kohlenwasserstoffe, n-C ₁₀₋₄₀	20	< 5	< 5
Cyanid, gesamt	0,13	< 0,05	< 0,05
EOX	< 0,1	< 0,1	< 0,1
Arsen	9,7	6,6	10
Blei	47	14	20
Cadmium	0,5	0,1	0,2
Chrom	30	19	24
Kupfer	53	9,0	12
Nickel	43	13	
Quecksilber	The state of the s		16
Thallium	< 0,1 0,2	< 0,1	< 0,1
Zink	160	< 0,1	0,2
2.0.03	160	35	49
PCB 28	< 0,001	< 0,001	< 0,001
PCB 52	< 0,001	< 0,001	< 0,001
PCB 101	< 0,001	< 0,001	< 0,001
PCB 138	0,004	< 0,001	< 0,001
PCB 153	0,003	< 0,001	< 0,001
PCB 180	0,001	< 0,001	< 0,001
Summe PCB (6 Kong.)	0,008	n.n.	n.n.
Naphthalin	0,008	< 0,001	< 0,001
Acenaphthylen	0,009	< 0,001	0,002
Acenaphthen	0,010	< 0,001	< 0,002
Fluoren	0,023	< 0,001	0,001
Phenanthren	0,023	0,001	
Anthracen	0,039	5 K 1008003	0,019
Fluoranthen	110000000000	< 0,001	0,008
Pyren	0,324	0,002	0,061
Benzo(a)anthracen	0,223	0,002	0,043
Chrysen	0,153	0,001	0,035
	0,151	0,001	0,030
Benzo(b)fluoranthen	0,224	0,002	0,041
Benzo(k)fluoranthen	0,074	< 0,001	0,016
Benzo(a)pyren	0,126	0,001	0,026
ndeno(1,2,3-cd)pyren	0,083	< 0,001	0,018
Dibenzo(a,h)anthracen	0,022	< 0,001	0,004
Benzo(g,h,i)perylen	0,083	< 0,001	0,017
Summe PAK (EPA)	1,773	0,010	0,322

Labornummer	14271	14272	14273
Probenbezeichnung	MP 04	MP 05	MP 06
Entnahmetiefe	0,1-0,3m	0,3-1,0m	0,3-1,0m
Dimension	[mg/kg TS]	[mg/kg TS]	[mg/kg TS]
Benzol	< 0,01	< 0.01	< 0.01
Toluol	< 0,01	< 0.01	< 0,01
Ethylbenzol	< 0.01	< 0.01	< 0,01
Xylole	< 0.01	< 0,01	< 0,01
Trimethylbenzole	< 0.01	< 0.01	< 0,01
Summe BTEX	n.n.	n.n.	n.n.
Vinylchlorid	< 0,01	< 0.01	< 0.01
1,1-Dichlorethen	< 0,01	< 0.01	< 0,01
Dichlormethan	< 0,01	< 0.01	< 0.01
1,2-trans-Dichlorethen	< 0,01	< 0.01	< 0.01
1,1-Dichlorethan	< 0,01	< 0.01	< 0.01
1,2-cis-Dichlorethen	< 0,01	< 0.01	< 0,01
Tetrachlormethan	< 0,01	< 0.01	< 0,01
1,1,1-Trichlorethan	< 0,01	< 0.01	< 0,01
Chloroform	< 0,01	< 0,01	< 0.01
1,2-Dichlorethan	< 0,01	< 0,01	< 0.01
Trichlorethen	< 0,01	< 0,01	< 0,01
Dibrommethan	< 0.01	< 0,01	< 0,01
Bromdichlormethan	< 0,01	< 0,01	< 0,01
Tetrachlorethen	< 0,01	< 0,01	< 0,01
1,1,2-Trichlorethan	< 0,01	< 0,01	< 0,01
Dibromchlormethan	< 0,01	< 0,01	< 0,01
Tribrommethan	< 0,01	< 0,01	< 0,01
Summe LHKW	n.n.	n.n.	n.n.

Seite 7 von 8

Labornummer	14271	14272	14273
Probenbezeichnung	MP 04	MP 05	MP 06
Entnahmetiefe	0,1-0,3m	0,3-1,0m	0,3-1,0m
Dimension	ELUAT [µg/L]	ELUAT [µg/L]	ELUAT [µg/L]
pH-Wert	7,2	7,0	7,0
el. Leitfähigkeit [µS/cm]	49	28	35
Phenol-Index	< 10	< 10	< 10
Cyanid, gesamt	< 5	< 5	< 5
Chlorid	3.300	1,100	3.600
Sulfat	1.400	2.800	3.200
Arsen	< 2,0	< 2,0	< 2,0
Blei	< 0,2	< 0,2	< 0,2
Cadmium	< 0,2	< 0,2	< 0,2
Chrom	< 0,3	< 0,3	< 0,3
Kupfer	< 2,0	< 2,0	< 2,0
Nickel	< 1,0	< 1,0	< 1,0
Quecksilber	< 0,1	< 0,1	< 0,1
Zink	< 2.0	< 2,0	< 2,0

tabellarische Darstellung der Analysenergebnisse

	100	12 4	7	ig:	11	T.	7	nut;		20	727	-21	7.7	THE PERSON	7/1	- 34	100	7.0	1.7	100	455
	700	100	4							0.8	9'0	1.5		2.5	700	Tabana V.	Į.	2.16	1.30	1.00	1
	Cyaman par	Section 787 Deader 787 Involve 787	200							4		- 3	+0	- BA	Cyamin per-	I make TR	0.13	20.10	0.14	0.43	
	#	Deaths Tittl		-						6.7	0.7	2,1	- 4	24	=	Protect Title	0.2	8.2	6.1	0.2	
	4	Section TRD		1	on spectage		World patients			150	300	450	1500	3,15pep.c.	A	Inghy THI	130	100	90	150	I
	*	Imple TR		The same of the same of the same of	100	100	PTUTMENTS TO WORKS passelle			0.0	10000	1,8	10		2	Ingly TRI	+8.0.1	4.0.4	4.0,1	4.0.1	Ī
1100000	*	Inche TO		ALC: NO.		-	VON CONT.			200	100	120	300	- 200	N	Implygring	25.0	49.0	17.0	43.0	İ
-	5	Drughg TRO		Tate Strategy .		The state of	April Bound			7	40	120	436	100000	a	Implicy TRI	31.0	510	24.0	53.0	ŀ
The State of the S	10	Inglig TRE Implied TRE Implied TRE Implied TRE		White manufact States Manual	100	Shorthard Market Sales	A CONTRACTOR		ı	2	130	160	900	- 000	Or gam.	Inphy TRI	23.0	31.9	16.0	30.0	
	3	Ingho TRE		Ribothelli	100	ner Billauerman	1000000		ŀ	1		0	0	+10	8	Party TRy	0.60	0.30	6,36	0,30	-
TAKE.	2	Set gages	-	ditties his	200-10	SCHARLING IN		1	-	2	9	210	700	0.000	E.	Inghe TRU	54.0	47.0	31.0	0,00	
	2	PRESTRE PROPERTY INSTANTAL			200	Geführfumstabschäftung					-	45	130	1000	2	Prophy THE	9730	8.20	6.40	8.70	0.00
State of	8	PROPERTY.		Catth	0.6	ш	н	70.11	100			8.15	62	50-	8	(Mg/g/TH)	0.03	0.01	0,00	8,81	
Bergotal	theat	Inplied TRI			2		l		r			8.0	-	1000	Suran(a)	mphg THI 1	0.2	110	0.7	0.7	9.00
A Service	-	Inply THE	Total Control	41	1.2/	Ì		Anthony and the							-	Implig TRT	0,01	0,02	0/10	8,03	4-0-004
Man - and		prophy TRC		4.2	2-10	ALC: UNKNOWN	2000	south these Co. of			-	200	8	001	PAKA EPA	F	164	1,79	106	123	20.00
Ŋ	_	ш					ı	Visco	-			-	10	-	ROK	Days 18	0.2	4.0.1	105	1.03	- t0 -
Barren .	Design	TO SHEET THE PROPERTY THE THE PARTY	The second	+ 0.1	0,1-3,5	0.50			-		Ī	,		I	Been	(H) (M)	4 0.33	1004	4001	< 0.01	40.01
- derey		Impho TRU	CAMPA-Clubs	4.2	2-10	210	23000		-						хаш	Impite TRY	W.R.	WW.	WW	11.00	4.0
		国际	Address goler	4.1	1-1-6		25.50		-				-		17600	Date of The	V	5	47	11.0	444
MON	-	Inglia In	Vargnessbarente Geführfungsabschätzung (nier: CANN-Uste)*	× 300 ×	300-1-000				100	300	Wall Andress	1000000	Control of the last	COMMISCONIES	жок	Inspire TRI		9 1	21	-	4.5
			utraverte Oel		C III				-		-	1			Ecoupses infe pri	4	MR-81	100.00	20.10	00.00	03-10
			Varges						(Thirt)					I	N. Carlot	III I	t	,	t	†	0
					TOPONANO.	Chief and which are and	4	-	Z D (her: Bodonart Laten/Schaff)	.02	2.1		200		Machinese	0.70	1000	20 40	11 10 000	1000	E A
						THE PARKET BY			Z D (herr. Box					1	(Snut) Pote	1	-	-	-	-	
								1000						1	100	1	1	1	2002	1	

Findspring gen. Geschendering bei Angelein der der Geschaftig Beweitung und Bichweitung von Dochstein in der Einstellungsmeinstellungsmeinschaft gen. Geschendung der Anstehn geschendung und der Schaftigen der Geschendungstellung der Anstehn geschaftigen. 1980

**Fangspring gen. Prüferent der Anstehn Bichweitungen auf Alleinermeinung und Bichweitung von Freinspringsbrichen Fan Früferentschaftigen. 1980

**Fangspring gen. Prüferent der Anhalterungen auf der Anstehnungspringsbrichen Prüferentschaftigen. 1980

**Fangspring gen. Prüferentschaftigen für Anhalterungen auf Anhalterungen von Freinspringsbrich gestehnt der Anhalterungen der Anhalterungen von Anhalterungen geschaftigen von Anhalterungen geschaftigen von Anhalterungsbrich geschaftigen der Prüferentschaftigen auf Geschaftigen der 198 Butzen werst zenachtet in 1880

**Fangspring der Geschaftigen von Anhalterungen auf Anhalterung der Frügen Welt im MP G4 tam der hannen Chembelen auf Genetingen der 198 Butzen werst zenachtet in seint netwenstellung.

**Fangspring der Frügen von Anhalterung der Prüferen WP G1 im MP G4 tam der hannen Chembelen auf Genetinge der 198 Butzen werst zenachtet in seint netwenstellung.

**Fangspring der Frügen von Anhalterung der Prüferen WP G1 im MP G4 tam der hannen Chembelen auf Genetinge der 198 Butzen werst zenachtet in seint netwenstellung.

**Fangspring von Anhalterung
м
2
ж
7
а
9
а
Ξ
а
ъ
е
-
Е
-
9
8
z
ъ
-2
в
а
£
-3

		1	I	+	100	100	()#	(1) Su	yun		100	3.0		0 0		7.0
Appendix .	hoose			350	350	1,500	2,000	90000	Ledenge	Spinel.	10	44		1	1	-
payment .			ı	26.95	84-85	61.0		Part of	payment	,	3.4	6.3			-	200
Chapte	100			30	30	25	100	>990	Owne	Popul	1.5	3.20	1.00	1 100	100	
11	100	ı		200	100	100	002	4200	1	Pol	1.8	-1.7		1.6		
Phenometer	100			8	20	9	opp	-CSSp	Paradidas	Detl.	4.19	< 10	619	4.10	4.10	
Chance par	1					110	- 02	No.	Cyamate ges.	1001	4.5	4.5	4.8	9.9	9.0	
a]				953	180	200	000	100	A	Dec	679	5.7	8.5	4.2	4.2	
2 1	de Country		den 2004/m	40.5	40.5	-	2	7	F	000	+0.1	4.0.1	+0.1	4.8.1	+8.4	-
. 1	State of Sec.		(hier, TR Boo	113	15	- 02	70.	24.4	N	2007	1 × 1	3.30	4.4	***	1.7	1
8 1	schild - White		o Semertany	20	20	3	400	300	8	1000	2.5	4.1	2.9	4.1	4.2	1
100	thing Hibouth	1	Malivechilich	12.5	12.5	25	- 80	7	or par	0.640	453	0.40	0,42	483	+ 0.3	40.4
8 10	a white his common	-	philiboverte	1.5	1.5	3	-	7	3.	light.	4.62	*8.2	4.02	* 0.2	+ 0.2	4113
£ 3	Geffehrdung	1	MAN.	40	40	- 90	200	>200	£	1000	407	0.3	0.5	+8.2	403	403
2 5		100		14	- 14	22		0.	2	100	2.8	+2	2.9	42	+2	43
	2								Estables-			0,0 - 0,1			0.3-1.0	0.3-1.0
			ı				ı		1(N)		0		ø	0	-0	0
		Shirt		20207	21.1	212	22	117	Machine		100-01	100 APR	400,03	100.00	140-06	VBP 005
	The State of the last								(Evans) Protes	1		1				
									- delayer				GEODOP.	1111		

Anlage 5

Schreiben der Stadt Schwerte vom 15.12.2014

Information zu evtl. Kampfmittelbeeinträchtigungen

Stadt Schwerte

Postfach 1729

GEOlogik Wilbers & Oeder GmbH

z.Hd. Frau Anne Bockstette

Kerstingskamp 12

48159 Münster

58212 Schwerte

STADT SCHWERTE Der Bürgermeister

Hansestadt an der Ruhr

Bereich Ordnung

Rathausstr. 31 58239 Schwerte

Es berät Sie:

Guntram Treder

Zimmer

012

Telefon:

02304/104-347

Telefax:

02304/104-723

F-Mail:

guntram.treder@stadt-schwerte.de

Öffnungszeiten

Montag und Mittwoch: 08:00 Uhr -13:30 Uhr

Dienstag:

08:00 Uhr -16:00 Uhr

Donnerstag: Freitag:

08:00 Uhr -18:00 Uhr

Ihr Zeichen

08:00 Uhr - 12:00 Uhr

Datum

04.12.2014

Mein Zeichen 32-21-04/76

15.12.2014

Ihre Anfrage auf Kampfmittelfreiheit für das Bauvorhaben Bereich: Rosenweg

EIBBLUABULS

18. Dez. 2014

Sehr geehrte Frau Bockstette.

der von Ihnen angefragte Bereich liegt in einem Bombenabwurfgebiet. Eine Luftbildauswertung durch den Kampfmittelbeseitigungsdienst der Bezirksregierung Arnsberg (KBD) lässt erkennen, dass keine unmittelbare Kampfmittelgefährdung vorliegt.

Wegen erkennbarer Kriegsbeeinflussung (mittlere Bombardierung) kann eine derzeit nicht erkennbare Kampfmittelbelastung der beantragten Fläche aber nicht gänzlich ausgeschlossen werden.

Für die weitere Untersuchungen können Schlitz- und Rammkernsondierungen bis maximal zu einem Durchmesser von 80 mm sowie Rammsondierung nach DIN 4094 und Bohrungen bis maximal zu einem Durchmesser von 120 mm drehend mit Schnecke (nicht schlagend) durchgeführt werden. Vor jedem weiteren Bodeneingriff hat eine Kontaktaufnahme des Tiefbauunternehmens mit der Ordnungsbehörde zu erfolgen.

Hinweis:

0

Bei der Bebauung eines Grundstückes ist immer Sorgfalt geboten, da das Vorhandensein von Kampfmitteln des Zweiten Weltkrieges nie ganz ausgeschlossen werden kann.

Weist bei Durchführung des Bauvorhabens der Aushub auf ungewöhnliche Verfärbung hin oder werden Gegenstände entdeckt, die nicht zugeordnet werden können oder verdächtig erscheinen, sind die Arbeiten sofort einzustellen. Setzen Sie sich dann unverzüglich mit dem Bereich Ordnung der Stadt Schwerte in Verbindung. Von diesem Hinweis ist der Tiefbauunternehmer von Ihnen zu unterrichten.

Mit freundlichen Grüßen

Im Auftrag

Gunfram Treder

ANTW_BOHRUNG.DOC

Anhang I

Altlastenund abfalltechnische Bewertungsgrundlagen

Altlasten- und abfalltechnische Bewertungsgrundlagen

I.1 Gefährdungsabschätzungen

I.1.1 Boden - Gefährdungsabschätzung

Die Bewertung der im Boden ermittelten Schadstoffgehalte im Hinblick auf ggf. vorliegende Gefährdungen (z.B. durch Aufnahme/Kontakt mit dem Boden [Wirkungspfad Boden – Mensch und Wirkungspfad Boden - Nutzpflanze] und bzgl. des Grundwassers [Wirkungspfad Boden - Sickerwasser – Grundwasser]) erfolgt – aufgrund eines fehlenden einheitlichen Regelwerks für sämtliche Untersuchungsparameter – in Anlehnung an

- die Prüfwerte nach Anhang 2 der Bundes-Bodenschutz- und Altlastenverordnung, BBodSchV vom 17.07.1999 (folgend als BBodSchV bezeichnet),
- die "Empfehlungen für die Erkundung, Bewertung und Behandlung von Grundwasserschäden" der Länderarbeitsgemeinschaft Wasser (LAWA) aus dem Jahre 1994 (folgend als LAWA-Liste bezeichnet) sowie
- die Prüfwerten gem. RdErl. D. Ministeriums für Städtebau und Wohnen, Kultur und Sport – V A 3 – 16.21 – u.d. Ministeriums für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz – IV-5-584.10/IV-6-3.6-21 – v. 14.03.2005 des Landes Nordrhein-Westfalen zur "Berücksichtigung von Flächen mit Bodenbelastungen, insbesondere Altlasten, bei der Bauleitplanung und im Baugenehmigungsverfahren (folgend als Altlastenerlass NRW bezeichnet).

Für die Bewertung der nachgewiesenen Schadstoffgehalte für die Metalle/ Schwermetalle As, Pb, Cd, Cr, Ni und Hg, die PAK- Einzelsubstanz Benzo(a)pyren sowie PCB und CN werden die Prüfwerte der BBodSchV für die direkte orale und inhalative Aufnahme schwer bzw. nicht flüchtiger Schadstoffe (Wirkungspfad Boden-Mensch) in Wohngebieten (= geplante Nutzung) herangezogen. Zusätzlich werden die Prüfwerte für Kinderspelflächen berücksichtigt'. In der BBodSchV werden die Prüfwerte wie folgt definiert:

Prüfwert:

Liegt die Konzentration von Schadstoffen unterhalb des jeweiligen Prüfwertes, ist insoweit der Verdacht einer schädlichen Bodenveränderung oder Altlast ausgeräumt.

Wenn die Schadstoffkonzentration im Boden Prüfwerte für den Boden überschreitet, ist deren Ausmaß und räumliche Verteilung unter Verwendung ei-

ner angepassten Probenahme zu ermitteln. Dabei soll auch festgestellt werden, ob sich aus begrenzten Anreicherungen von Schadstoffen Gefahren innerhalb einer Verdachtsfläche oder altlastenverdächtigen Fläche ergeben und ob eine Abgrenzung von nicht belasteten Flächen geboten ist.

Anmerkung:

Die Prüfwerte gelten nach der BBodSchV für den oberflächennahen Bereich, d.h. für Bodenproben aus Entnahmetiefen bis max. 0,1 m (Park- und Freizeitanlagen/Industrie- und Gewerbegrundstücke) bzw. 0,35 m (Kinderspielflächen/Wohngebiete). Im vorliegenden Gutachten werden darüber hinaus auch die Bodenproben aus
tieferen Entnahmehorizonten in Anlehnung an die Prüfwerte der BBodSchV beurteilt. So können bei Anderungen des Geländeniveaus im Zuge ggf. erfolgender Nutzungsänderungen die dann evtl. exponierten Bodenschichten im Vorfeld betrachtet werden und die Parameterkonzentrationen als Eignungskriterien zu Planungszwecken herangezogen werden.

Im Altlastenerlass NRW wird darüber hinaus für die sog. Nutzung "Wohngärten", d.h. für eine Gartennutzung sowohl als Nutzgarten, als auch für Kinderspiel ein gesonderter Prüfwert für den Wirkungspfad Boden-Mensch festgelegt.

Wirkungspfad/ Prüfwerte [mg/kg]	E		Boden - Nutz- pflanze				
	BBo	odSchV	Altiasteneriass NRW				
Parameter	Wohn- gebiete	Kinderspiel- flächen	Wohngärten				
As	50	25	25				
Pb	400	200	200				
Cd	20	10	2*				
Cr	400	200					
Ni	140	70					
Hg	20	10		5			
Benzo(a)pyren	4	2		1			
PCB	0,8	0,4					
Cyanide ges.	50	50					

^{*} gesonderter Prüfwert für Haus- und Kleingärten gem. BBodSchV Anhang 2, Tab.1.4

Für die Bewertung der in den Proben nachgewiesenen Schadstoffgehalte für die Parameter KW, PAK (n. EPA), die PAK-Einzelsubstanz Naphthalin sowie der Summenparameter BTEX und LHKW werden die <u>nutzungsunabhängigen</u> Orientierungswerte der LAWA-Liste verwendet. In der LAWA-Liste werden folgende Orientierungswerte definiert:

Prüfwert:

Wert, bei deren Unterschreitung der Gefahrenverdacht i.d.R. als ausgeräumt gilt. Bei Überschreitung ist eine wei-

tere Sachverhaltsermittlung geboten.

Maßnahmenschwellenwert:

Wert, bei dessen Überschreitung i.d.R. weitere Maßnahmen, z.B. eine Sicherung oder eine Sanierung auszulösen

ist

In der folgenden Tabelle sind die Orientierungswerte der LAWA-Liste dargestellt:

Orientierungswerte [mg/kg]									
Parameter	Prüfwert	Maßnahmen- schwellenwert							
KW	300 - 1.000	1.000 - 5.000							
PAK	2 – 10	10 - 100							
Naphthalin	1-2	5							
BTEX	2 - 10	10 – 30							
LHKW	1 - 5	5 - 25							

Spezielle Anforderungen wurden in der BBodSchV für "Mutterböden" bzw. humose Oberböden definiert (§ 12 Anforderungen an das Aufbringen und Einbringen von Materialien auf oder in den Boden). Falls derartige, im Rahmen von Erd- oder Tiefbauarbeiten ggf. abgeschobene Böden auf oder in eine durchwurzelbare Bodenschicht (wieder-) eingebaut werden oder mit diesen Böden die Herstellung einer durchwurzelbaren Bodenschicht erfolgen soll, müssen Vorsorgewerte eingehalten werden.

Der folgenden Tabelle sind die Vorsorgewerte der BBodSchV für **Schwermetall**gehalte zu entnehmen, wobei zwischen den Bodenarten Ton, Lehm/Schluff und Sand differenziert wird.

Vorsorgewerte der BBodSchV für anorganische Stoffe											
Bodenart	Cd [mg/kg]	Pb [mg/kg]	Cr ges. [mg/kg]	Cu [mg/kg]	Hg [mg/kg]	Ni [mg/kg]	Zn [mg/kg]				
Ton	1,5	100	100	60	1,0	70	200				
Lehm/Schluff	1,0	70	60	40	0,5	50	150				
Sand	0,4	40	30	20	0,1	15	60				

Ferner wurden in der BBodSchV folgende, ebenfalls tabellarisch dargestellte Vorsorgewerte für die organischen Schadstoffparameter PCB, Summenkonzentration der PAK n.
EPA sowie für die PAK-Einzelsubstanz Benzo(a)pyren definiert, wobei hier bei den Bewertungen der Humusgehalt zu berücksichtigen ist:

Vorsorgewerte der BBodSchV für organische Stoffe									
Böden	PCB [mg/kg]	Σ PAK n. EPA [mg/kg]	Benzo(a)pyren [mg/kg]						
Humusgehalt > 8 %	0,1	10	1,0						
Humusgehalt ≤ 8 %	0,05	3,0	0,3						

Tabelle IV: Vorsorgewerte der BBodSchV - organische Stoffe.

I.1.2 Grundwasser

In der BBodSchV (vgl. Anhang I.1.1) werden weiterhin Prüfwerte zur Beurteilung des Wirkungspfades Boden – Sickerwasser - Grundwasser benannt. Diese "Eluatwerte" dienen zur Bewertung von im Boden festgestellten Schadstoffbelastungen im Hinblick auf das Gefährdungspotenzial des Grundwassers. Die Prüfwerte gelten nur für den Ort der Beurteilung, d. h. den Übergangsbereich von der ungesättigten in die gesättigte Bodenzone. In der nachstehenden Tabelle werden die Parameter berücksichtigt, die bei der vorliegenden Begutachtung durch die Eluatuntersuchungen gem. der TR Boden (2004) erfasst wurden.

Ferner ist darauf hinzuweisen, dass der Eluatansatz bei Untersuchungen gem. den Kriterien der TR Boden (sog. "S 4-Eluat") von den Vorgaben der BBodSchV abweicht. Die Bewertung der Ergebnisse der Eluatuntersuchungen gem. Prüfwerten der BBodSchV weist aufgrund der Art des Eluatansatzes sowie unter Berücksichtigung des Orts der Beurteilung lediglich einen <u>orientierenden</u> Charakter auf.

Die Prüfwerte der BBodSchV in Hinsicht auf Mobilisierbarkeiten von Schadstoffen beim Transfer vom Boden in das Grundwasser werden in der nachstehenden Tabelle dokumentiert.

Parameter	Prüfwert Sickerwasser gem. BBodSchV Wirkungspfad Boden – Grundwasser im Eluat [µg/l]
As	10
Pb	25
Cd	5
Cr ges.	50
Cu	50
Ni	50
Hg	1
Zn	500
CN ges.	50
Phenole	20

Anmerkung: n.b. = nicht benannt

1.2 Bewertungsgrundlagen Boden – Entsorgung

Die Bewertung der in den Bodeneinzel- sowie den Mischproben dieser Untersuchung ermittelten Schadstoffgehalte im Hinblick auf eine mögliche Entsorgung (Verwertung / Beseitigung) erfolgt in Anlehnung an die "Anforderungen an die stoffliche Verwertung von mineralischen Abfällen: Technische Regeln Teil II: Technische Regeln für die Verwertung 1.2 Bodenmaterial" (nachfolgend als <u>TR Boden 2004</u> bezeichnet).

Die Technischen Regeln Boden wurden am 04./05.12.2004 von der Umweltministerkonferenz zur Kenntnis genommen und von der Mehrheit der Bundesländer und auch vom Land Brandenburg erklärt, die TR-Boden in den Vollzug zu übernehmen.

Die TR Boden wurde für <u>Böden mit einem Anteil mineralischer Fremdbestandteile</u> < 10 Vol.-% definiert.

^{*} Konzentrationsangaben Chlorid und Sulfat in mg/l

In der TR Boden 2004 werden folgende Zuordnungswerte (Obergrenzen der Einbauklassen) für die Verwertung von minderbelasteten Böden unterschieden:

Zuordnungswert Z 0: Uneingeschränkter Einbau, Verwendung in bodenähnlichen An-

wendungen, z. B. Wiedereinbau auf Baugeländen.

Im Feststoff werden Z 0-Werte für die drei Bodenarten Sand, Lehm/Schluff und Ton unterschieden (Mischböden sind wie die Bodenart Lehm/Schluff zu bewer-

ten).

Im Eluat ist hingegen nur ein Z 0-Wert ausgewiesen.

Zuordnungswert Z 0*: Uneingeschränkter Einbau, Verwendung in bodenähnlichen An-

wendungen, z.B. für die Verfüllung von Abgrabungen unter Einhaltung bestimmter Randbedingungen.

(die Verfüllung muss mit 2 m Boden gem. den Vorsorgewerten

der BBodSchV abgedeckt werden etc.).

Im Feststoff werden keine Z 0*-Werte für die Bodenarten Sand, Lehm/ Schluff und Ton unterschieden, jedoch gibt es bei einigen Parametern wiederum Aus-

nahmen, d.h. höhere Z 0*-Werte.

Im Eluat ist nur ein Z 0*-Wert ausgewiesen.

Zuordnungswert Z 1: eingeschränkter offener Einbau in technischen Bauwerken (Z 1).

Im Feststoff werden keine Z 1.1/Z 1.2-Werte für die Bodenarten Sand, Lehm/

Schluff und Ton unterschieden.

Im Eluat hingegen erfolgt eine Unterscheidung in die Zuordnungswerte Z 1.1 (Normalfall) und Z 1.2 (Einzelfall/ Ausnahme = Einbau nur in hydrogeologisch

günstigen Gebieten).

Eine Ausnahme bilden hier die im Feststoff ermittelten PAK-Gehalte. Bei Konzentrationen von ≤ 3 mg/kg liegen entsorgungstechnisch keine relevanten Belastungen vor (= Z 0) bzw. ist bei Konzentrationen > 3 mg/kg ≤ 9 mg/kg ein Einbau nur in Gebieten mit hydrogeologisch günstigen Deckschichten (entspr.

weitgehend Z 1.2 = Z 1 "mit Einschränkung") möglich.

Zuordnungswert Z 2: eingeschränkter Einbau mit definierten technischen Sicherungs-

maßnahmen, z.B. Lärm-/Sichtschutzwälle, Straßendämme, etc. (Abdeck-/Dichtungsmaterialen wie Kunststoffdichtungsbahnen, Asphalte, Beton etc., sind über dem Z 2-Boden aufzubringen)

Im Feststoff werden keine Z 2-Werte für die Bodenarten Sand, Lehm/ Schluff

und Ton unterschieden.

Im Eluat ist auch nur ein Z 2-Wert ausgewiesen.

Aus den o.a. Ausführungen ist ersichtlich, dass für eine Bodenklassifikation im Hinblick auf die Verwertung/Entsorgung gem. TR Boden 2004 eine erhebliche Differenzierung bei der Zuordnung und Einstufung der Schadstoffgehalte erforderlich ist.

Nachfolgend werden die Zuordnungswerte Z 0 / Z 0*, Z 1 und Z 2 der TR Boden 2004 im Feststoff aufgelistet.

Parameter	Einheit		Z 0		Z 0*	Z1	Z2
		Sand	Lehm/ Schluff	Ton		(T-3.1	
As	mg/kg	10	15	20	15 (20)	45	150
Pb	mg/kg	40	70	100	140	210	700
Cd	mg/kg	0,4	1	1,5	1 (1,5)	3	10
Cr ges.	mg/kg	30	60	100	120	180	600
Cu	mg/kg	20	40	60	80	120	400
Ni	mg/kg	15	50	70	100	150	500
TI	mg/kg	0,4	0,7	1	0,7 (1,0)	2,1	7
Hg	mg/kg	0,1	0,5	1	1,0	1,5	5
Zn	mg/kg	60	150	200	300	450	1.500
Cyanide ges.	mg/kg	(4)				3	10
EOX	mg/kg	1	1	1	1	3	10
KW	mg/kg	100	100	100	200 (400)	300 (600)	1.000
BTEX	mg/kg	1	1	1	1	1	- 1
LCKW	mg/kg	1	1	1	1	1	1
PCB	mg/kg	0,05	0,05	0,05	0,1	0,15	0,5
PAK	mg/kg	3	3	3	3	3 (9)	30
Ben- zo(a)pyren	mg/kg	0,3	0,3	0,3	0,6	0,9	3

Anmerkungen: Bei den in Klammern benannten Werten handelt es sich um Schadstoffgehalte, die im Ausnahme-/Sonderfall herangezogen werden, z.B. bei der Bodenart Ton, bei besonderen C/N-Verhältnissen, bei KW-Verbindungen mit Kettenlängen von C10 bis C22 bzw. C10 bis C40

> Bei PAK-Konzentrationen von ≤ 3 mg/kg liegen keine entsorgungsrelevanten Belastungen vor (entspr. Z 0) bzw. ist bei Konzentrationen > 3 mg/kg \leq 9 mg/kg ein Einbau nur in Gebieten mit hydrogeologisch günstigen Deckschichten (entspr. weitgehend Z 1.2 = Z 1 "mit Einschränkung") möglich.

In der folgenden Tabelle sind die Zuordnungswerte Z 0 / Z 0*, Z 1.1, Z 1.2 und Z 2 der TR Boden 2004 im Eluat aufgelistet:

Parameter	Einheit	Z0/Z0*	Z 1.1	Z 1.2	Z2
pH-Wert	-	6,5 - 9,5	6,5 - 9,5	6 – 12	5,5 - 12
elektr. Leitf.	μS/cm	250	250	1.500	2.000
As	µg/l	14	14	20	60 (120)
Pb	µg/l	40	40	80	200
Cd	µg/l	1,5	1,5	3	6
Cr ges.	μg/l	12,5	12,5	25	60
Cu	µg/l	20	20	60	100
Ni	µg/l	15	15	20	70
Hg	µg/l	< 0,5	< 0,5	1	2
Zn	µg/l	150	150	200	600
Chlorid	mg/l	30	30	50	100 (300)
Sulfat	mg/l	20	20	50	200
Cyanid ges.	µg/l	5	5	10	20
Phenol-Index	µg/l	20	20	40	100

Anmerkungen:

bei den in Klammern benannten Werten, handelt es sich um Schadstoffgehalte, die im Ausnahme/Sonderfall herangezogen werden, z.B. bei natürlichen Böden (d. h. geogenen / natürlichen Belastungen).

Für <u>Böden</u>, deren <u>Volumenanteil an mineralischen Fremdbestandteilen > 10 %</u> beträgt, wird in der TR Boden von 2004 auf die "Technischen Regeln Gemische" verwiesen, die allerdings noch nicht vorliegen. Wie aus den Darstellungen des Kapitels 4.2 hervorgeht, wurden derartige <u>Boden-Bauschutt-Gemenge</u> bei den durchgeführten Sondierungen nicht erschlossen. Erfahrungsgemäß kann aber nicht ausgeschlossen werden, dass derartige Chargen bei der Umsetzung der geplanten Bauvorhaben erschlossen werden.

Behelfsweise können diese ggf. im Rahmen von Aushubarbeiten anfallenden Boden-Bauschutt-Gemenge auf Grundlage der Zuordnungswerte der LAGA-Richtlinie Bauschutt des Jahres 1997/2003 bewertet werden.